示例#1
0
def test_sagemaker_apply_delete_model_fail():
    orig = botocore.client.BaseClient._make_api_call
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)

    def fail_delete_model(self, operation_name, kwarg):
        if operation_name == 'DeleteModel':
            raise ClientError(
                {
                    'Error': {
                        'Code': 'ValidationException',
                        'Message': 'failed message'
                    }
                },
                'DeleteModel',
            )
        elif operation_name == 'CreateEndpoint':
            raise ClientError({}, 'CreateEndpoint')
        else:
            return orig(self, operation_name, kwarg)

    with patch('botocore.client.BaseClient._make_api_call',
               new=fail_delete_model):
        result = deployment_operator.add(sagemaker_deployment_pb)
    assert result.status.status_code == Status.INTERNAL
    assert result.status.error_message.startswith(
        'Failed to cleanup sagemaker model')
示例#2
0
def test_sagemaker_apply_success():
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)
    result_pb = deployment_operator.add(sagemaker_deployment_pb)
    assert result_pb.status.status_code == Status.OK
    assert result_pb.deployment.name == TEST_DEPLOYMENT_NAME
示例#3
0
def test_sagemaker_apply_fail_not_local_repo():
    yatai_service = create_yatai_service_mock(repo_storage_type=BentoUri.UNSET)
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)
    result_pb = deployment_operator.add(sagemaker_deployment_pb)
    assert result_pb.status.status_code == Status.INTERNAL
    assert result_pb.status.error_message.startswith('BentoML currently not support')
示例#4
0
def test_sagemaker_update_deployment_with_new_bento_service_tag():
    mocked_yatai_service = create_yatai_service_mock()
    mocked_sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(mocked_yatai_service)
    deployment_operator.add(mocked_sagemaker_deployment_pb)
    mocked_sagemaker_deployment_pb_with_new_bento_service_tag = (
        generate_sagemaker_deployment_pb())
    mocked_sagemaker_deployment_pb_with_new_bento_service_tag.spec.bento_version = (
        'NEW_BENTO_VERSION')
    update_sagemaker_deployment_result = deployment_operator.update(
        mocked_sagemaker_deployment_pb_with_new_bento_service_tag,
        mocked_sagemaker_deployment_pb,
    )
    assert update_sagemaker_deployment_result.status.status_code == Status.OK
示例#5
0
def get_deployment_operator(yatai_service, deployment_pb):
    operator = deployment_pb.spec.operator

    if operator == DeploymentSpec.AWS_SAGEMAKER:
        from bentoml.yatai.deployment.sagemaker.operator import (
            SageMakerDeploymentOperator, )

        return SageMakerDeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.AWS_LAMBDA:
        from bentoml.yatai.deployment.aws_lambda.operator import (
            AwsLambdaDeploymentOperator, )

        return AwsLambdaDeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.GCP_FUNCTION:
        raise NotImplementedError(
            "GCP Function deployment operator is not supported in current version of "
            "BentoML")
    elif operator == DeploymentSpec.KUBERNETES:
        raise NotImplementedError(
            "Kubernetes deployment operator is not supported in current version of "
            "BentoML")
    elif operator == DeploymentSpec.CUSTOM:
        raise NotImplementedError(
            "Custom deployment operator is not supported in current version of BentoML"
        )
    else:
        raise YataiDeploymentException("DeployOperator must be set")
示例#6
0
def get_deployment_operator(yatai_service, deployment_pb):
    operator = deployment_pb.spec.operator

    if operator == DeploymentSpec.AWS_SAGEMAKER:
        from bentoml.yatai.deployment.sagemaker.operator import (
            SageMakerDeploymentOperator, )

        return SageMakerDeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.AWS_LAMBDA:
        from bentoml.yatai.deployment.aws_lambda.operator import (
            AwsLambdaDeploymentOperator, )

        return AwsLambdaDeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.AZURE_FUNCTIONS:
        from bentoml.yatai.deployment.azure_functions.operator import (
            AzureFunctionsDeploymentOperator, )

        return AzureFunctionsDeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.AWS_EC2:
        from bentoml.yatai.deployment.aws_ec2.operator import AwsEc2DeploymentOperator

        return AwsEc2DeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.CUSTOM:
        raise NotImplementedError(
            "Custom deployment operator is not supported in current version of BentoML"
        )
    else:
        raise YataiDeploymentException("DeployOperator must be set")
示例#7
0
def test_sagemaker_apply_duplicate_endpoint():
    orig = botocore.client.BaseClient._make_api_call
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)
    deployment_operator.add(sagemaker_deployment_pb)

    endpoint_name = '{ns}-{name}'.format(
        ns=TEST_DEPLOYMENT_NAMESPACE, name=TEST_DEPLOYMENT_NAME
    )
    expect_value = 'Endpoint {} already exists'.format(endpoint_name.replace('_', '-'))

    def mock_ok_return(self, op_name, kwargs):
        if op_name == 'CreateModel' or op_name == 'CreateEndpointConfig':
            return ''
        else:
            return orig(self, op_name, kwargs)

    with patch('botocore.client.BaseClient._make_api_call', new=mock_ok_return):
        with pytest.raises(ValueError) as error:
            deployment_operator.add(sagemaker_deployment_pb)
    assert str(error.value) == expect_value