def convert_single_example(ex_index, example, label_map, max_seq_length,
                           tokenizer, mode):
    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, word in enumerate(textlist):
        print("word= ", word)
        token = tokenizer.tokenize(word)
        if '▁' in token:
            token.remove('▁')
        print("token= ", token)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)

            else:
                labels.append("X")

    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]
        labels = labels[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    # append("O") or append("[CLS]") not sure!
    label_ids.append(label_map["[CLS]"])
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    # append("O") or append("[SEP]") not sure!
    label_ids.append(label_map["[SEP]"])
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    # label_mask = [1] * len(input_ids)
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        # we don't concerned about it!
        label_ids.append(0)
        ntokens.append("[PAD]")

    print(len(input_ids))
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length

    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x)
                                                    for x in label_ids]))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
    )
    write_tokens(ntokens, mode)
    return feature
示例#2
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    label_map = {}
    for (i, label) in enumerate(label_list, 1):
        label_map[label] = i
    #print('sample example: {} {}'.format(example.text, example.label))
    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, word in enumerate(textlist):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)
            else:
                labels.append("X")
    # tokens = tokenizer.tokenize(example.text)
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]
        labels = labels[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    label_ids.append(0)
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    label_ids.append(0)
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        label_ids.append(0)
    # print(len(input_ids))
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length

    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x)
                                                    for x in label_ids]))
    feature = InputFeatures(input_ids=input_ids,
                            input_tokens=ntokens,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_ids=label_ids)
    return feature
示例#3
0
def convert_examples_to_features(examples, seq_length, tokenizer):
  """Loads a data file into a list of `InputBatch`s."""

  features = []
  for (ex_index, example) in enumerate(examples):
    tokens_a = tokenizer.tokenize(example.text_a)

    tokens_b = None
    if example.text_b:
      tokens_b = tokenizer.tokenize(example.text_b)

    if tokens_b:
      # Modifies `tokens_a` and `tokens_b` in place so that the total
      # length is less than the specified length.
      # Account for [CLS], [SEP], [SEP] with "- 3"
      _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
    else:
      # Account for [CLS] and [SEP] with "- 2"
      if len(tokens_a) > seq_length - 2:
        tokens_a = tokens_a[0:(seq_length - 2)]

    # The convention in BERT is:
    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0     0   0   0  0     0 0
    #
    # Where "type_ids" are used to indicate whether this is the first
    # sequence or the second sequence. The embedding vectors for `type=0` and
    # `type=1` were learned during pre-training and are added to the wordpiece
    # embedding vector (and position vector). This is not *strictly* necessary
    # since the [SEP] token unambiguously separates the sequences, but it makes
    # it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is
    # used as as the "sentence vector". Note that this only makes sense because
    # the entire model is fine-tuned.
    tokens = []
    input_type_ids = []
    tokens.append("[CLS]")
    input_type_ids.append(0)
    for token in tokens_a:
      tokens.append(token)
      input_type_ids.append(0)
    tokens.append("[SEP]")
    input_type_ids.append(0)

    if tokens_b:
      for token in tokens_b:
        tokens.append(token)
        input_type_ids.append(1)
      tokens.append("[SEP]")
      input_type_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < seq_length:
      input_ids.append(0)
      input_mask.append(0)
      input_type_ids.append(0)

    assert len(input_ids) == seq_length
    assert len(input_mask) == seq_length
    assert len(input_type_ids) == seq_length

    if ex_index < 5:
      tf.logging.info("*** Example ***")
      tf.logging.info("unique_id: %s" % (example.unique_id))
      tf.logging.info("tokens: %s" % " ".join(
          [tokenization.printable_text(x) for x in tokens]))
      tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
      tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
      tf.logging.info(
          "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))

    features.append(
        InputFeatures(
            unique_id=example.unique_id,
            tokens=tokens,
            input_ids=input_ids,
            input_mask=input_mask,
            input_type_ids=input_type_ids))
  return features
示例#4
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer, mode):
    """
    将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
    :param ex_index: index
    :param example: 一个样本
    :param label_list: 标签列表
    :param max_seq_length:
    :param tokenizer:
    :param mode:
    :return:
    """
    label_map = {}
    # 1表示从1开始对label进行index化
    for (i, label) in enumerate(label_list, 1):
        label_map[label] = i
    # 保存label->index 的map
    if not os.path.exists(os.path.join(FLAGS.output_dir, 'label2id.pkl')):
        with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'),
                         'wb') as w:
            pickle.dump(label_map, w)

    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, word in enumerate(textlist):
        # 分词,如果是中文,就是分字
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)
            else:  # 一般不会出现else
                labels.append("X")
    # tokens = tokenizer.tokenize(example.text)
    # 序列截断
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]  # -2 的原因是因为序列需要加一个句首和句尾标志
        labels = labels[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")  # 句子开始设置CLS 标志
    segment_ids.append(0)
    # append("O") or append("[CLS]") not sure!
    label_ids.append(
        label_map["[CLS]"]
    )  # O OR CLS 没有任何影响,不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注,使用LCS 也没毛病
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")  # 句尾添加[SEP] 标志
    segment_ids.append(0)
    # append("O") or append("[SEP]") not sure!
    label_ids.append(label_map["[SEP]"])
    input_ids = tokenizer.convert_tokens_to_ids(
        ntokens)  # 将序列中的字(ntokens)转化为ID形式
    input_mask = [1] * len(input_ids)
    # label_mask = [1] * len(input_ids)
    # padding, 使用
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        # we don't concerned about it!
        label_ids.append(0)
        ntokens.append("**NULL**")
        # label_mask.append(0)
    # print(len(input_ids))
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    # assert len(label_mask) == max_seq_length

    # 打印部分样本数据信息
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x)
                                                    for x in label_ids]))
        # tf.logging.info("label_mask: %s" % " ".join([str(x) for x in label_mask]))

    # 结构化为一个类
    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
        # label_mask = label_mask
    )
    # mode='test'的时候才有效
    write_tokens(ntokens, mode)
    return feature
示例#5
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    if isinstance(example, PaddingInputExample):
        return InputFeatures(
            input_ids=[0] * max_seq_length,
            input_mask=[0] * max_seq_length,
            segment_ids=[0] * max_seq_length,
            label_id=[0] * max_seq_length,
            is_real_example=False)

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i
    
    labelfile = os.path.join(FLAGS.output_dir, "nerlabel2id.pkl")
    with open(labelfile, 'wb') as fw:
        pickle.dump(label_map, fw)

    tokens = example.text.split("\t")
    # tokens = tokenizer.tokenize(example.text)
    labels = example.label.split("\t")
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens) > max_seq_length - 2:
        tokens = tokens[0:(max_seq_length - 2)]
        labels = labels[0:(max_seq_length - 2)]

    ntokens = []
    segment_ids = []
    label_id = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    label_id.append(label_map["[CLS]"])
    # for token in tokens:
    for i in range(len(tokens)):
        ntokens.append(tokens[i])
        segment_ids.append(0)
        label_id.append(label_map[labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    label_id.append(label_map["[SEP]"])

    input_ids = tokenizer.convert_tokens_to_ids(ntokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        label_id.append(label_map["[PAD]"])
        ntokens.append("[PAD]")


    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_id) == max_seq_length
    assert len(ntokens) == max_seq_length

    # label_id = label_map[example.label]
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info("tokens: %s" % " ".join(
            [tokenization.printable_text(x) for x in ntokens]))
        tf.logging.info("input_ids: %s" %
                        " ".join([str(x) for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_id: %s" % " ".join([str(x) for x in label_id]))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_id=label_id,
        is_real_example=True)
    return feature
示例#6
0
def convert_single_example(ex_index, example, max_seq_length, tokenizer, mode):
    """
    将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
    :param ex_index: 样本在examples列表中的index
    :param example: 一个InputExample样本对象,包含了source和target句子
    :param max_seq_length:  序列的最大长度
    :param tokenizer:  tokenizer对象
    :param mode:  模式,训练,验证,预测
    :return:
    """

    # 在这里采用wordpiece算法对source和target进行分词
    tokens_source = tokenizer.tokenize(example.source)
    tokens_target = tokenizer.tokenize(example.target)

    # 序列截断,在这里 -2 的原因是因为序列需要加一个句首[CLS]和句尾[SEP]标志
    if len(tokens_source) > max_seq_length - 2:
        tokens_source = tokens_source[0:(max_seq_length - 2)]

    if len(tokens_target) > max_seq_length - 2:
        tokens_target = tokens_target[0:(max_seq_length - 2)]

    # 对输入的token首尾分别加上[CLS]和[SEP]
    ntokens_source = ["[CLS]"] + tokens_source + ["[SEP]"]
    ntokens_target = ["[CLS]"] + tokens_target + ["[SEP]"]

    # 将ntokens进行index映射,转化为index的形式, 映射的vocab是传入的vocab.txt
    source_ids = tokenizer.convert_tokens_to_ids(ntokens_source)
    target_ids = tokenizer.convert_tokens_to_ids(ntokens_target)

    # 初始化句子向量
    source_segment_ids = [0] * len(ntokens_source)
    target_segment_ids = [0] * len(ntokens_target)

    # mask,真实的token用1表示,pad用0表示,只有真实的token会被attention
    source_mask = [1] * len(source_ids)
    target_mask = [1] * len(target_ids)

    # 按照最大长度补全
    while len(source_ids) < max_seq_length:
        source_ids.append(0)
        source_mask.append(0)
        source_segment_ids.append(0)

    while len(target_ids) < max_seq_length:
        target_ids.append(0)
        target_mask.append(0)
        target_segment_ids.append(0)

    assert len(source_ids) == max_seq_length
    assert len(source_mask) == max_seq_length
    assert len(source_segment_ids) == max_seq_length
    assert len(target_ids) == max_seq_length
    assert len(target_mask) == max_seq_length
    assert len(target_segment_ids) == max_seq_length

    # 打印部分样本数据信息
    if ex_index < 1:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens_source]))
        tf.logging.info("source_ids: %s" %
                        " ".join([str(x) for x in source_ids]))
        tf.logging.info("source_mask: %s" %
                        " ".join([str(x) for x in source_mask]))
        tf.logging.info("source_segment_ids: %s" %
                        " ".join([str(x) for x in source_segment_ids]))
        tf.logging.info("target_ids: %s" %
                        " ".join([str(x) for x in target_ids]))
        tf.logging.info("target_mask: %s" %
                        " ".join([str(x) for x in target_mask]))
        tf.logging.info("target_segment_ids: %s" %
                        " ".join([str(x) for x in target_segment_ids]))

    # 实例化成一个InputFeatures对象
    feature = InputFeatures(source_ids=source_ids,
                            source_mask=source_mask,
                            source_segment_ids=source_segment_ids,
                            target_ids=target_ids,
                            target_mask=target_mask,
                            target_segment_ids=target_segment_ids)

    return feature
def convert_single_example_to_feature(ex_index, example, label_map,
                                      max_seq_length, tokenizer, mode):
    textlist = example.tokens
    poslist = example.poss
    chunklist = example.chunks
    labellist = example.labels
    tokens = []
    poss = []
    chunks = []
    labels = []
    for i, word in enumerate(textlist):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        pos_1 = poslist[i]
        chunk_1 = chunklist[i]
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                poss.append(pos_1)
                chunks.append(chunk_1)
                labels.append(label_1)
            else:
                poss.append("X")
                chunks.append("X")
                labels.append("X")
    # tokens = tokenizer.tokenize(example.text)
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]
        poss = poss[0:(max_seq_length - 2)]
        chunks = chunks[0:(max_seq_length - 2)]
        labels = labels[0:(max_seq_length - 2)]

    # save tokens, poss, chunks, labels back to example
    example.tokenized_tokens = tokens
    example.tokenized_poss = poss
    example.tokenized_chunks = chunks
    example.tokenized_labels = labels

    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    # label_ids.append(label_map["[CLS]"])
    label_ids.append(0)
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    # label_ids.append(label_map["[SEP]"])
    label_ids.append(0)
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    # padding
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        # we don't concerned about it!
        label_ids.append(0)
        ntokens.append("**NULL**")
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length

    if ex_index < 5:
        print("*** Example ***")
        print("guid: %s" % (example.guid))
        print("tokens: %s" %
              " ".join([tokenization.printable_text(x) for x in tokens]))
        print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        print("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        print("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        print("label_ids: %s" % " ".join([str(x) for x in label_ids]))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
    )
    return feature
def write_instance_to_example_files(instances, tokenizer, max_seq_length,
                                    max_predictions_per_seq, output_files):
    """Create TF example files from `TrainingInstance`s."""
    writers = []
    for output_file in output_files:
        writers.append(tf.python_io.TFRecordWriter(output_file))

    writer_index = 0

    total_written = 0
    for (inst_index, instance) in enumerate(instances):
        input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
        input_mask = [1] * len(input_ids)
        segment_ids = list(instance.segment_ids)
        assert len(input_ids) <= max_seq_length

        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        # print("length of segment_ids:",len(segment_ids),"max_seq_length:", max_seq_length)
        assert len(segment_ids) == max_seq_length

        masked_lm_positions = list(instance.masked_lm_positions)
        masked_lm_ids = tokenizer.convert_tokens_to_ids(
            instance.masked_lm_labels)
        masked_lm_weights = [1.0] * len(masked_lm_ids)

        while len(masked_lm_positions) < max_predictions_per_seq:
            masked_lm_positions.append(0)
            masked_lm_ids.append(0)
            masked_lm_weights.append(0.0)

        next_sentence_label = 1 if instance.is_random_next else 0

        features = collections.OrderedDict()
        features["input_ids"] = create_int_feature(input_ids)
        features["input_mask"] = create_int_feature(input_mask)
        features["segment_ids"] = create_int_feature(segment_ids)
        features["masked_lm_positions"] = create_int_feature(
            masked_lm_positions)
        features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
        features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
        features["next_sentence_labels"] = create_int_feature(
            [next_sentence_label])

        tf_example = tf.train.Example(features=tf.train.Features(
            feature=features))

        writers[writer_index].write(tf_example.SerializeToString())
        writer_index = (writer_index + 1) % len(writers)

        total_written += 1

        if inst_index < 20:
            tf.logging.info("*** Example ***")
            tf.logging.info("tokens: %s" % " ".join(
                [tokenization.printable_text(x) for x in instance.tokens]))

            for feature_name in features.keys():
                feature = features[feature_name]
                values = []
                if feature.int64_list.value:
                    values = feature.int64_list.value
                elif feature.float_list.value:
                    values = feature.float_list.value
                tf.logging.info(
                    "%s: %s" %
                    (feature_name, " ".join([str(x) for x in values])))

    for writer in writers:
        writer.close()

    tf.logging.info("Wrote %d total instances", total_written)
示例#9
0
def convert_examples_to_features(examples,
                                 tokenizer,
                                 max_seq_length,
                                 doc_stride,
                                 max_query_length,
                                 is_training,
                                 verbose_logging=False,
                                 logger=None):
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    features = []
    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
        if is_training:
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position +
                                                     1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position,
                tokenizer, example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(
                    tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans,
                                                       doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
            if is_training:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                out_of_span = False
                if not (tok_start_position >= doc_start
                        and tok_end_position <= doc_end):
                    out_of_span = True

                if out_of_span:
                    start_position = 0
                    end_position = 0
                else:
                    doc_offset = len(query_tokens) + 2
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset

            if example_index < 2 and verbose_logging:
                logger.info("*** Example ***")
                logger.info("unique_id: %s" % (unique_id))
                logger.info("example_index: %s" % (example_index))
                logger.info("doc_span_index: %s" % (doc_span_index))
                logger.info(
                    "tokens: %s" %
                    " ".join([tokenization.printable_text(x) for x in tokens]))
                logger.info("token_to_orig_map: %s" % " ".join([
                    "%d:%d" % (x, y)
                    for (x, y) in six.iteritems(token_to_orig_map)
                ]))
                logger.info("token_is_max_context: %s" % " ".join([
                    "%d:%s" % (x, y)
                    for (x, y) in six.iteritems(token_is_max_context)
                ]))
                logger.info("input_ids: %s" %
                            " ".join([str(x) for x in input_ids]))
                logger.info("input_mask: %s" %
                            " ".join([str(x) for x in input_mask]))
                logger.info("segment_ids: %s" %
                            " ".join([str(x) for x in segment_ids]))
                if is_training:
                    answer_text = " ".join(
                        tokens[start_position:(end_position + 1)])
                    logger.info("start_position: %d" % (start_position))
                    logger.info("end_position: %d" % (end_position))
                    logger.info("answer: %s" %
                                (tokenization.printable_text(answer_text)))

            features.append(
                InputFeatures(unique_id=unique_id,
                              example_index=example_index,
                              doc_span_index=doc_span_index,
                              tokens=tokens,
                              token_to_orig_map=token_to_orig_map,
                              token_is_max_context=token_is_max_context,
                              input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              start_position=start_position,
                              end_position=end_position))
            unique_id += 1

            if len(features) % 5000 == 0:
                logger.info("Processing features: %d" % (len(features)))

    return features
示例#10
0
def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer):
    """Loads a data file into a list of `InputBatch`s.
    Convert examples into token form as input of BERT model.
    """
    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    input_data = []
    guids = []
    for (ex_index, example) in enumerate(examples):
        guid = example.guid
        guids.append(guid)
        tokens_a = tokenizer.tokenize(example.text_a)
        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        if ex_index % 10000 == 0:
            tf.logging.info("Writing example %d of %d" %
                            (ex_index, len(examples)))

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        input_mask = [1] * len(input_ids)

        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)
        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 3:
            tf.logging.info("*** Example ***")
            tf.logging.info("guid: %s" % (example.guid))
            tf.logging.info(
                "tokens: %s" %
                " ".join([tokenization.printable_text(x) for x in tokens]))
            tf.logging.info("input_ids: %s" %
                            " ".join([str(x) for x in input_ids]))
            tf.logging.info("input_mask: %s" %
                            " ".join([str(x) for x in input_mask]))
            tf.logging.info("segment_ids: %s" %
                            " ".join([str(x) for x in segment_ids]))
            tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

        features = collections.OrderedDict()
        features["input_ids"] = input_ids
        features["input_mask"] = input_mask
        features["segment_ids"] = segment_ids
        features["label_ids"] = label_id
        features["guid"] = guids
        print(guids)
        input_data.append(features)

    return input_data
示例#11
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer, mode):
    """
    :param ex_index: example num
    :param example:
    :param label_list: all labels
    :param max_seq_length:
    :param tokenizer: WordPiece tokenization
    :param mode:
    :return: feature
    IN this part we should rebuild input sentences to the following format.
    example:[Jim,Hen,##son,was,a,puppet,##eer]
    labels: [B,I,X,O,O,O,X]
    """
    label_map = {}
    # here start with zero which means that "[PAD]" is zero
    # start with 1, 0 for paddding
    for i, label in enumerate(label_list, 1):
        label_map[label] = i
    with open(FLAGS.output_dir + '/label2id.pkl', 'wb+') as wf:
        pickle.dump(label_map, wf)

    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, (word, label) in enumerate(zip(textlist, labellist)):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        for m in range(len(token)):
            if m == 0:
                labels.append(label)
            else:
                labels.append('X')
    # only Account for [CLS] with "- 1".
    # account for ending signal [SEP], with "- 2"
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:max_seq_length - 2]
        labels = labels[0:max_seq_length - 2]
    ntokens = []
    segment_ids = []
    label_ids = []
    # begining signal [CLS]
    ntokens.append("[CLS]")
    segment_ids.append(0)
    label_ids.append(label_map["[CLS]"])
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    '''
    after that we don't add "[SEP]" because we want a sentence don't have
    stop tag, because i think its not very necessary.
    or if add "[SEP]" the model even will cause problem, special the crf layer was used.
    '''
    # endinging signal [SEP]
    ntokens.append("[SEP]")
    segment_ids.append(0)
    label_ids.append(label_map["[SEP]"])

    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    #use zero to padding sequence
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        label_ids.append(0)
        ntokens.append("**NULL**")
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length

    if ex_index < 5:
        logging.info("*** Example ***")
        logging.info("guid: %s" % (example.guid))
        logging.info("tokens: %s" %
                     " ".join([tokenization.printable_text(x)
                               for x in tokens]))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
    )
    # we need ntokens because if we do predict it can help us return to original token.
    return feature, ntokens, label_ids
示例#12
0
def convert_single_example(ex_index, example, max_seq_length, tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""

  tokens = tokenizer.tokenize(example.text)
  # Account for [CLS] and [SEP] with "- 2"
  if len(tokens) > max_seq_length - 2:
    tokens = tokens[0:(max_seq_length - 2)]

  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = ["[CLS]"] + tokens + ["[SEP]"]
  segment_ids = [0] * len(tokens)

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
    segment_ids.append(0)

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

  if ex_index < 5:
    tf.logging.info("*** Example ***")
    tf.logging.info("guid: %s" % (example.guid))
    tf.logging.info("tokens: %s" %
                    " ".join([tokenization.printable_text(x) for x in tokens]))
    tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
    tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
    tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
    tf.logging.info("labels: %s" % " ".join([str(x) for x in example.labels]))

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_ids=example.labels)
  return feature
示例#13
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    if isinstance(example, PaddingInputExample):
        return InputFeatures(input_ids=[0] * max_seq_length,
                             input_mask=[0] * max_seq_length,
                             segment_ids=[0] * max_seq_length,
                             label_id=0,
                             is_real_example=False)

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i
    with open(FLAGS.middle_output + "/label2id.pkl", 'wb') as w:
        pickle.dump(label_map, w)

    tokens_a = tokenizer.tokenize(example.text_a)
    if len(tokens_a) > max_seq_length - 1:
        tokens_a = tokens_a[0:(max_seq_length - 1)]

    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    label_id = label_map[example.label]

    if ex_index < 3:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_id=label_id,
                            is_real_example=True)

    return feature, label_id
示例#14
0
文件: bert_ner.py 项目: bluesea0/ditk
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer, mode):
    label_map = {}
    for (i, label) in enumerate(label_list, 1):
        label_map[label] = i
    with open('./output/label2id.pkl', 'wb') as w:
        pickle.dump(label_map, w)
    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, word in enumerate(textlist):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)
            else:
                labels.append("X")
    # tokens = tokenizer.tokenize(example.text)
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]
        labels = labels[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    # append("O") or append("[CLS]") not sure!
    label_ids.append(label_map["[CLS]"])
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    # append("O") or append("[SEP]") not sure!
    label_ids.append(label_map["[SEP]"])
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    # label_mask = [1] * len(input_ids)
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        # we don't concerned about it!
        label_ids.append(0)
        ntokens.append("**NULL**")
        # label_mask.append(0)
    # print(len(input_ids))
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    # assert len(label_mask) == max_seq_length

    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x)
                                                    for x in label_ids]))
        # tf.logging.info("label_mask: %s" % " ".join([str(x) for x in label_mask]))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
        # label_mask = label_mask
    )
    write_tokens(ntokens, mode)
    write_labels(labels, mode)
    return feature
示例#15
0
def convert_single_example(ex_index, example, token_label_list, predicate_label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""
    if isinstance(example, PaddingInputExample):
        return InputFeatures(
            input_ids=[0] * max_seq_length,
            input_mask=[0] * max_seq_length,
            segment_ids=[0] * max_seq_length,
            token_label_ids=[0] * max_seq_length,
            predicate_label_id = [0],
            is_real_example=False)

    token_label_map = {}
    for (i, label) in enumerate(token_label_list):
        token_label_map[label] = i

    predicate_label_map = {}
    for (i, label) in enumerate(predicate_label_list):
        predicate_label_map[label] = i

    text_token = example.text_token.split("\t")[0].split(" ")
    if example.token_label is not None:
        token_label = example.token_label.split("\t")[0].split(" ")
    else:
        token_label = ["O"] * len(text_token)
    assert len(text_token) == len(token_label)

    text_predicate = example.text_token.split("\t")[1]
    if example.token_label is not None:
        token_predicate = example.token_label.split("\t")[1]
    else:
        token_predicate = text_predicate
    assert text_predicate == token_predicate

    tokens_b = [text_predicate] * len(text_token)
    predicate_id = predicate_label_map[text_predicate]


    _truncate_seq_pair(text_token, tokens_b, max_seq_length - 3)

    tokens = []
    token_label_ids = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    token_label_ids.append(token_label_map["[CLS]"])

    for token, label in zip(text_token, token_label):
        tokens.append(token)
        segment_ids.append(0)
        token_label_ids.append(token_label_map[label])

    tokens.append("[SEP]")
    segment_ids.append(0)
    token_label_ids.append(token_label_map["[SEP]"])

    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    #bert_tokenizer.convert_tokens_to_ids(["[SEP]"]) --->[102]
    bias = 1 #1-100 dict index not used
    for token in tokens_b:
      input_ids.append(predicate_id + bias) #add  bias for different from word dict
      segment_ids.append(1)
      token_label_ids.append(token_label_map["[category]"])

    input_ids.append(tokenizer.convert_tokens_to_ids(["[SEP]"])[0]) #102
    segment_ids.append(1)
    token_label_ids.append(token_label_map["[SEP]"])

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        token_label_ids.append(0)
        tokens.append("[Padding]")

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(token_label_ids) == max_seq_length

    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info("tokens: %s" % " ".join(
            [tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        tf.logging.info("token_label_ids: %s" % " ".join([str(x) for x in token_label_ids]))
        tf.logging.info("predicate_id: %s" % str(predicate_id))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        token_label_ids=token_label_ids,
        predicate_label_id=[predicate_id],
        is_real_example=True)
    return feature
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    '''Converts a single `InputClass` into a single `InputFeatures`.'''

    if isinstance(example, PaddingClass):
        return InputFeatures(input_ids=[0] * max_seq_length,
                             input_mask=[0] * max_seq_length,
                             segment_ids=[0] * max_seq_length,
                             label_id=0,
                             is_real_example=False)

    label_map = {label: i for (i, label) in enumerate(label_list)}

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = tokenizer.tokenize(example.text_b) if example.text_b else None

    if tokens_b:  # opt. for no take_b, - 3 = [CLS] + [SEP] * 2
        _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:  # - 2 = [CLS] + [SEP]
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[0:(max_seq_length - 2)]

    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0     0   0   0  0     0 0
    tokens = ['[CLS]', *[ii for ii in tokens_a], '[SEP]']
    segment_ids = [0] * (len(tokens_a) + 1)  # No.X sentences

    if tokens_b:
        tokens = [*tokens, *[ii for ii in tokens_b], '[SEP]']
        segment_ids = [*segment_ids, *[1] * (len(tokens_b) + 1)]

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    input_mask = [1] * len(input_ids)  # mask 0: pad; 1: real

    pad_len = max_seq_length - len(input_ids)
    if not pad_len:  # zero-padded
        input_ids = [*input_ids, *[0] * pad_len]
        input_mask = [*input_mask, *[0] * pad_len]
        segment_ids = [*segment_ids, *[0] * pad_len]

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    label_id = label_map[example.label]
    if ex_index < 5:
        tf.logging.info(">>>>> Example >>>>>")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_id=label_id,
                            is_real_example=True)
    return feature
示例#17
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    if isinstance(example, PaddingInputExample):
        return InputFeatures(input_ids=[0] * max_seq_length,
                             input_mask=[0] * max_seq_length,
                             segment_ids=[0] * max_seq_length,
                             label_id=0,
                             is_real_example=False)

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = tokenizer.tokenize(example.text_b)

    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_seq_length - 3:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)

    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    for token in tokens_b:
        tokens.append(token)
        segment_ids.append(1)
    tokens.append("[SEP]")
    segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    if example.label in label_list:
        label_id = int(example.label)
    else:
        label_id = -1

    if ex_index < 3:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_id=label_id,
                            is_real_example=True)

    raw_tokens = example.text_a + '[SEP]' + example.text_b
    return feature, raw_tokens, label_id
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    if isinstance(example, PaddingInputExample):
        return InputFeatures(input_ids=[0] * max_seq_length,
                             input_mask=[0] * max_seq_length,
                             segment_ids=[0] * max_seq_length,
                             label_id=0,
                             is_real_example=False)

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = None
    if example.text_b:
        tokens_b = tokenizer.tokenize(example.text_b)

    if tokens_b:
        # Modifies `tokens_a` and `tokens_b` in place so that the total
        # length is less than the specified length.
        # Account for [CLS], [SEP], [SEP] with "- 3"
        _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:
        # Account for [CLS] and [SEP] with "- 2"
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[0:(max_seq_length - 2)]

    # The convention in BERT is:
    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0     0   0   0  0     0 0
    #
    # Where "type_ids" are used to indicate whether this is the first
    # sequence or the second sequence. The embedding vectors for `type=0` and
    # `type=1` were learned during pre-training and are added to the wordpiece
    # embedding vector (and position vector). This is not *strictly* necessary
    # since the [SEP] token unambiguously separates the sequences, but it makes
    # it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is
    # used as the "sentence vector". Note that this only makes sense because
    # the entire model is fine-tuned.
    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    if tokens_b:
        for token in tokens_b:
            tokens.append(token)
            segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    label_id = label_map[example.label]
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_id=label_id,
                            is_real_example=True)
    return feature
示例#19
0
def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, forward, backward, mode):
    """
    :param ex_index: example num
    :param example:
    :param label_list: all labels
    :param max_seq_length:
    :param tokenizer: WordPiece tokenization
    :param mode:
    :return: feature
    IN this part we should rebuild input sentences to the following format.
    example:[Jim,Hen,##son,was,a,puppet,##eer]
    labels: [B,I,X,O,O,O,X]
    """
    label_map = dict()
    # here start with zero which means that "[PAD]" is zero
    # start with 1, 0 for paddding
    for i, label in enumerate(label_list, 1):
        label_map[label] = i

    with open('./data/{}/label2id.pkl'.format(FLAGS.dataset), 'wb+') as wf:
        pickle.dump(label_map, wf)

    pos2id = dict()
    with open('./data/{}/pos2id.pkl'.format(FLAGS.dataset), 'rb') as rf:
        pos2id = pickle.load(rf)

    with open('./data/{}/mark2id.pkl'.format(FLAGS.dataset), 'rb') as rf2:
        mark2id = pickle.load(rf2)

    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    # featurelist = [list(map(int, features.split('-'))) for features in example.feature.split(' ')]
    poslist = example.pos.split(' ')
    marklist = example.mark.split(' ')
    tokens = []
    labels = []
    poses = []
    marks = []
    for i, (word, label, pos, mark) in enumerate(zip(textlist, labellist, poslist, marklist)):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        for m in range(len(token)):
            if m == 0:
                labels.append(label)
                poses.append(pos)
                marks.append(mark)
            else:
                labels.append('X')
                poses.append(0)
                marks.append(0)
    # only Account for [CLS] with "- 1".
    # account for ending signal [SEP], with "- 2"
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0: max_seq_length - 2]
        labels = labels[0: max_seq_length - 2]
        poses = poses[0: max_seq_length - 2]
        marks = marks[0: max_seq_length - 2]
    ntokens = []
    segment_ids = []
    label_ids = []
    pos_ids = []
    mark_ids = []
    # begin signal [CLS]
    ntokens.append("[CLS]")
    segment_ids.append(0)
    label_ids.append(label_map["[CLS]"])
    pos_ids.append(pos2id["[CLS]"])
    mark_ids.append(mark2id["[CLS]"])
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
        pos_ids.append(int(poses[i]))
        mark_ids.append(int(marks[i]))
    # ending signal [SEP]
    ntokens.append("[SEP]")
    segment_ids.append(0)
    label_ids.append(label_map["[SEP]"])
    pos_ids.append(pos2id["[SEP]"])
    mark_ids.append(pos2id["[SEP]"])

    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    # use zero to padding sequence
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        label_ids.append(0)
        pos_ids.append(0)
        mark_ids.append(0)
        ntokens.append("**NULL**")
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    assert len(pos_ids) == max_seq_length
    assert len(mark_ids) == max_seq_length

    if ex_index < 5:
        logging.info("*** Example ***")
        logging.info("guid: %s" % example.guid)
        logging.info("tokens: %s" % " ".join(
            [tokenization.printable_text(x) for x in tokens]))
        logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
        logging.info("pos_ids: %s" % " ".join([str(x) for x in pos_ids]))
        logging.info("mark_ids: %s" % " ".join([str(x) for x in mark_ids]))
        logging.info("ntokens: %s" % " ".join([str(x) for x in ntokens]))

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
        pos_ids=pos_ids,
        mark_ids=mark_ids,
        forward=forward,
        backward=backward,
    )
    # we need ntokens because if we do predict it can help us return to original token.
    return feature, ntokens, label_ids
示例#20
0
def convert_single_example(ex_index, example, entity_label_list,
                           class_label_list, max_seq_length, tokenizer, mode):
    class_label_map = {}
    for (i, label) in enumerate(class_label_list):
        class_label_map[label] = i
    label_map = {}
    label_map_reference = {}
    for (i, label) in enumerate(entity_label_list, 1):
        label_map[label] = i
        label_map_reference[label] = i
    label_map_reference['x'] = len(entity_label_list) + 1
    label2idpath = os.path.join(FLAGS.output_dir, 'label2id.json')
    label2idpath_reference = os.path.join(FLAGS.output_dir,
                                          'label2id_reference.json')

    if not os.path.exists(label2idpath_reference):
        with open(label2idpath_reference, 'w', encoding='utf8') as w:
            json.dump(label_map_reference, w)

    textlist = example.text.split()
    labellist = list(example.entity_label)
    tokens = []
    labels = []
    reference_labels = []
    unknow_index = []
    for i, word in enumerate(textlist):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)
                reference_labels.append(label_1)
            else:
                if label_1 == 'o':
                    labels.append('o')
                else:
                    labels.append('m')

                reference_labels.append('x')
            if token[m] == "[UNK]":
                unknow_index.append(i)
    assert len(tokens) == len(labels) == len(reference_labels)
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]
        labels = labels[0:(max_seq_length - 2)]
        reference_labels = reference_labels[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    reference_label_ids = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    label_ids.append(label_map['o'])
    reference_label_ids.append(label_map_reference['o'])
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
        reference_label_ids.append(label_map_reference[reference_labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    label_ids.append(label_map['o'])
    reference_label_ids.append(label_map_reference['o'])
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    class_label = class_label_map[example.class_label]

    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        label_ids.append(0)
        reference_label_ids.append(0)
        ntokens.append("**NULL**")

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    assert len(reference_label_ids) == max_seq_length

    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x)
                                                    for x in label_ids]))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_ids=label_ids,
                            reference_label_ids=reference_label_ids,
                            class_label=class_label)

    output_tokens = []
    for i, each in enumerate(ntokens):
        if each != "[UNK]":
            output_tokens.append(each)
        else:
            index = unknow_index[0]
            output_tokens.append(textlist[index])
            unknow_index = unknow_index[1:]
    write_tokens(output_tokens, mode)
    return feature
示例#21
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """
    将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
    :param ex_index: index
    :param example: 一个样本
    :param label_list: 标签列表
    :param max_seq_length:
    :param tokenizer:
    :return:
    """
    label_map = {}
    # 1表示从1开始对label进行index化
    for (i, label) in enumerate(label_list, 1):
        label_map[label] = i

    tokens_a = tokenizer.tokenize(example.text_a)
    label_a = example.label.split(' ')
    if len(tokens_a) > max_seq_length:
        tokens_a = tokens_a[0:max_seq_length]
        label_a = label_a[0:max_seq_length]
    tokens = []
    label_ids = []
    segment_ids = []
    for index, token in enumerate(tokens_a):
        tokens.append(token)
        label_ids.append(label_map[label_a[index]])
        segment_ids.append(0)
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    input_mask = [1] * len(input_ids)

    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        label_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length

    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x)
                                                    for x in label_ids]))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_ids=label_ids)
    return feature
示例#22
0
def convert_single_example_train(ex_index, example, label_list, max_seq_length, tokenizer, output_dir, mode):
    label_map = {}
    for (i, label) in enumerate(label_list, 1):
        label_map[label] = i
    if not os.path.exists(os.path.join(output_dir, 'label2id.pkl')):
        with codecs.open(os.path.join(output_dir, 'label2id.pkl'), 'wb') as w:
            pickle.dump(label_map, w)

    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, word in enumerate(textlist):
        # 分词,如果是中文,就是分字,但是对于一些不在BERT的vocab.txt中得字符会被进行WordPice处理
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)
            else:  # 一般不会出现else
                labels.append("X")

    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]
        labels = labels[0:(max_seq_length - 2)]
    
    ntokens = ["[CLS]"]
    segment_ids = [0]
    label_ids = [label_map["[CLS]"]] 
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    label_ids.append(label_map["[SEP]"])
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)

    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        label_ids.append(0)
        ntokens.append("**NULL**")

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length

    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info("tokens: %s" % " ".join(
            [tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))

    feature = InputFeatures(input_ids=input_ids, input_mask=input_mask,
                            segment_ids=segment_ids, label_ids=label_ids)
    # mode='test'的时候才有效
    write_tokens(ntokens, output_dir, mode)
    return feature
示例#23
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """
    :param ex_index: example num
    :param example:
    :param label_list: all labels
    :param max_seq_length:
    :param tokenizer: WordPiece tokenization
    :param mode:
    :return: feature

    IN this part we should rebuild input sentences to the following format.
    example:[Jim,Hen,##son,was,a,puppet,##eer]
    labels: [I-PER,I-PER,X,O,O,O,X]

    """
    label_map = {}
    # # here start with zero this means that "[PAD]" is zero
    for (i, label) in enumerate(label_list):
        label_map[label] = i
    with open(info.middle_output + "/label2id.pkl", 'wb') as w:
        pickle.dump(label_map, w)
    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, (word, label) in enumerate(zip(textlist, labellist)):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        for i, _ in enumerate(token):
            if i == 0:
                labels.append(label)
            else:
                labels.append("X")
    # only Account for [CLS] with "- 1".
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 1)]
        labels = labels[0:(max_seq_length - 1)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    label_ids.append(label_map["[CLS]"])
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    # after that we don't add "[SEP]" because we want a sentence don't have
    # stop tag, because i think its not very necessary.
    # or if add "[SEP]" the model even will cause problem, special the crf layer was used.
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    mask = [1] * len(input_ids)
    # use zero to padding and you should
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        mask.append(0)
        segment_ids.append(0)
        label_ids.append(0)
        ntokens.append("[PAD]")
    assert len(input_ids) == max_seq_length
    assert len(mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    assert len(ntokens) == max_seq_length
    if ex_index < 3:
        logging.info("*** Example ***")
        logging.info("guid: %s" % (example.guid))
        logging.info("tokens: %s" %
                     " ".join([tokenization.printable_text(x)
                               for x in tokens]))
        logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        logging.info("input_mask: %s" % " ".join([str(x) for x in mask]))
        logging.info("segment_ids: %s" %
                     " ".join([str(x) for x in segment_ids]))
        logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
    feature = InputFeatures(
        input_ids=input_ids,
        mask=mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
    )
    # we need ntokens because if we do predict it can help us return to original token.
    # return feature, ntokens, label_ids
    return feature
示例#24
0
def convert_single_example_dev(ex_index, text, label, label2id, max_seq_length,
                               tokenizer):
    """
    将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
    :param ex_index: index
    :param example: 一个样本
    :param label_list: 标签列表
    :param max_seq_length:
    :param tokenizer:
    :param mode:
    :return:
    """
    O_index = label2id["O"]
    # L: ['B-ORG', 'M-ORG', 'M-ORG', 'M-ORG']
    # W: ['中', '共', '中', '央']
    textlist = text.split(' ')
    labellist = label.split(' ')
    tokens = []
    labels = []
    for i, word in enumerate(textlist):
        # 对每个字进行tokenize,返回list
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)
            else:  # 一般不会出现else
                labels.append("X")

    # 序列截断
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]  # -2 的原因是因为序列需要加一个句首和句尾标志
        labels = labels[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")  # 句子开始设置CLS 标志
    segment_ids.append(0)
    label_ids.append(label2id["[CLS]"])  #
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label2id[labels[i]])
    ntokens.append("[SEP]")  # 句尾添加[SEP] 标志
    segment_ids.append(0)
    label_ids.append(label2id["[SEP]"])
    input_ids = tokenizer.convert_tokens_to_ids(
        ntokens)  # 将序列中的字(ntokens)转化为ID形式
    input_mask = [1] * len(input_ids)

    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        # label用O去padding
        label_ids.append(O_index)
        ntokens.append("[PAD]")
        # label_mask.append(0)
    # print(len(input_ids))
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    # assert len(label_mask) == max_seq_length

    # 打印部分样本数据信息
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x)
                                                    for x in label_ids]))
        # tf.logging.info("label_mask: %s" % " ".join([str(x) for x in label_mask]))

    # 结构化为一个类
    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
        # label_mask = label_mask
    )
    return feature
示例#25
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    if isinstance(example, PaddingInputExample):
        return InputFeatures(input_ids=[0] * max_seq_length,
                             input_mask=[0] * max_seq_length,
                             segment_ids=[0] * max_seq_length,
                             label_id=0,
                             is_real_example=False)

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = None
    if example.text_b:
        tokens_b = tokenizer.tokenize(example.text_b)

    if tokens_b:
        # Modifies `tokens_a` and `tokens_b` in place so that the total
        # length is less than the specified length.
        # Account for [CLS], [SEP], [SEP] with "- 3"
        _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:
        # Account for [CLS] and [SEP] with "- 2"
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[0:(max_seq_length - 2)]

    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    if tokens_b:
        for token in tokens_b:
            tokens.append(token)
            segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    label_id = label_map[example.label]
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_id=label_id,
                            is_real_example=True)
    return feature
def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode):
    """
    将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
    :param ex_index: index
    :param example: 一个样本
    :param label_list: 标签列表
    :param max_seq_length:
    :param tokenizer:
    :param mode:
    :return:
    """
    label_map = {}
    # 1表示从1开始对label进行index化
    for (i, label) in enumerate(label_list, 1):
        label_map[label] = i
    # 保存label->index 的map
    with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'wb') as w:
        pickle.dump(label_map, w)
    textlist = example.text.split(' ')
    labellist = example.label.split(' ')
    tokens = []
    labels = []
    for i, word in enumerate(textlist):
        # 分词,如果是中文,就是分字
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        label_1 = labellist[i]
        for m in range(len(token)):
            if m == 0:
                labels.append(label_1)
            else:  # 一般不会出现else
                labels.append("X")
    # tokens = tokenizer.tokenize(example.text)
    # 序列截断
    if len(tokens) >= max_seq_length - 1:
        tokens = tokens[0:(max_seq_length - 2)]  # -2 的原因是因为序列需要加一个句首和句尾标志
        labels = labels[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")  # 句子开始设置CLS 标志
    segment_ids.append(0)
    # append("O") or append("[CLS]") not sure!
    label_ids.append(label_map["[CLS]"])  # O OR CLS 没有任何影响,不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注,使用LCS 也没毛病
    for i, token in enumerate(tokens):
        ntokens.append(token)
        segment_ids.append(0)
        label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")  # 句尾添加[SEP] 标志
    segment_ids.append(0)
    # append("O") or append("[SEP]") not sure!
    label_ids.append(label_map["[SEP]"])
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)  # 将序列中的字(ntokens)转化为ID形式
    input_mask = [1] * len(input_ids)
    # label_mask = [1] * len(input_ids)
    # padding, 使用
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        # we don't concerned about it!
        label_ids.append(0)
        ntokens.append("**NULL**")
        # label_mask.append(0)
    # print(len(input_ids))
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    # assert len(label_mask) == max_seq_length

    # 打印部分样本数据信息
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info("tokens: %s" % " ".join(
            [tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
        # tf.logging.info("label_mask: %s" % " ".join([str(x) for x in label_mask]))

    # 结构化为一个类
    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_ids=label_ids,
        # label_mask = label_mask
    )
    # mode='test'的时候才有效
    write_tokens(ntokens, mode)
    return feature
示例#27
0
def convert_single_example(ex_index,
                           example,
                           token_label_list,
                           sent_label_list,
                           max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""
    if isinstance(example, PaddingInputExample):
        return InputFeatures(
            input_ids=[0] * max_seq_length,
            input_masks=[0] * max_seq_length,
            segment_ids=[0] * max_seq_length,
            token_label_ids=[0] * max_seq_length,
            sent_label_id=0)

    token_label_map = {}
    for (i, token_label) in enumerate(token_label_list):
        token_label_map[token_label] = i
    
    sent_label_map = {}
    for (i, sent_label) in enumerate(sent_label_list):
        sent_label_map[sent_label] = i
    
    token_items = example.text.split(" ")
    token_label_items = example.token_label.split(" ")
    
    tokens = []
    token_labels = []
    for token, token_label in zip(token_items, token_label_items):
        token_subitems = tokenizer.tokenize(token)
        token_label_subitems = [token_label] + ["X"] * (len(token_subitems) - 1)
        tokens.extend(token_subitems)
        token_labels.extend(token_label_subitems)
    
    if len(tokens) > max_seq_length - 2:
        tokens = tokens[0:(max_seq_length - 2)]
    
    if len(token_labels) > max_seq_length - 2:
        token_labels = token_labels[0:(max_seq_length - 2)]
    
    # The convention in BERT is:
    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0     0   0   0  0     0 0
    #
    # Where "type_ids" are used to indicate whether this is the first
    # sequence or the second sequence. The embedding vectors for `type=0` and
    # `type=1` were learned during pre-training and are added to the wordpiece
    # embedding vector (and position vector). This is not *strictly* necessary
    # since the [SEP] token unambiguously separates the sequences, but it makes
    # it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is
    # used as the "sentence vector". Note that this only makes sense because
    # the entire model is fine-tuned.
    
    input_tokens = []
    segment_ids = []
    token_label_ids = []
    sent_label_id = sent_label_map[example.sent_label]
    
    input_tokens.append("[CLS]")
    segment_ids.append(0)
    token_label_ids.append(token_label_map["[CLS]"])
    
    for i, token in enumerate(tokens):
        input_tokens.append(token)
        segment_ids.append(0)
        token_label_ids.append(token_label_map[token_labels[i]])
    
    input_tokens.append("[SEP]")
    segment_ids.append(0)
    token_label_ids.append(token_label_map["[SEP]"])
    
    input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
    
    # The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
    input_masks = [1] * len(input_ids)
    
    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_masks.append(0)
        segment_ids.append(0)
        token_label_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_masks) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(token_label_ids) == max_seq_length
    
    if ex_index < 5:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info("tokens: %s" % " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        tf.logging.info("input_masks: %s" % " ".join([str(x) for x in input_masks]))
        tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        tf.logging.info("token_label_ids: %s" % " ".join([str(x) for x in token_label_ids]))
        tf.logging.info("sent_label_id: %s" % str(sent_label_id))

    feature = InputFeatures(
        input_ids=input_ids,
        input_masks=input_masks,
        segment_ids=segment_ids,
        token_label_ids=token_label_ids,
        sent_label_id=sent_label_id)
    return feature