return dataZ subj_list = [ 'P103', 'P105', 'P107', 'P108', 'P110', 'P114', 'P116', 'P118', 'P120', 'P121' ] for subj in subj_list: print("************************") print("Testing on {}".format(subj)) personalized_folder = '../data/wild/{}/personalized'.format(subj) maybe_create_folder(personalized_folder) df = pd.read_csv('../data/wild/{}/feature.csv'.format(subj)) exclusion = ['label', 'date_exp', 'start', 'end'] feature_names = [f for f in df.columns.values if not f in exclusion] selected_columns = feature_names[:-5] df = standardize_zscore(df, selected_columns) # Leave one day out validation day = [] day_index = [] precision = [] recall = [] fscore = [] precision_neg = []
return dataZ subj_list = [ 'P103', 'P105', 'P107', 'P108', 'P110', 'P114', 'P116', 'P118', 'P120', 'P121' ] for subj in subj_list: print("************************") print("Testing on {}".format(subj)) generalized_folder = '../data/wild/{}/generalized'.format(subj) maybe_create_folder(generalized_folder) df = pd.read_csv('../data/wild/{}/feature.csv'.format(subj)) exclusion = ['label', 'date_exp', 'start', 'end'] feature_names = [f for f in df.columns.values if not f in exclusion] selected_columns_normalization = feature_names[:-5] concat_list = [] for outside in subj_list: if outside == subj: print("Excluding {}".format(outside)) continue df_outside = pd.read_csv('../data/wild/{}/feature.csv'.format(outside)) concat_list.append(df_outside) df_generalized = pd.concat(concat_list)
for subj in subj_list: files = list_files_in_directory( os.path.join('../data/wild/', subj, 'personalized')) dur_df_list = [] # for file in files: for day in range(14): filepath = "../data/wild/{}/personalized/prediction_day_{}.csv".format( subj, day) if not os.path.isfile(filepath): continue maybe_create_folder(os.path.join('Meal_prediction', subj)) lprint(log_file, filepath) raw_df = pd.read_csv(filepath) # TIME ZONE CONTAINED AUTO CHECK CODE: raw_df = df_to_datetime_tz_aware(raw_df, ['start', 'end']) starttimes = raw_df['start'].values endtimes = raw_df['end'].values preds = raw_df['prediction'].values earliest = raw_df['start'].min() latest = raw_df['end'].max() dt = pd.date_range(start=earliest, end=latest, freq='50ms')