pl.figure(figsize=bp.golden_ratio(5)) x = np.linspace(0,5*np.pi,100) for i in range(n): pl.plot(x, 1-np.sin(x[::-1]/np.sqrt(i+1)), marker=bp.markers[i],mfc='w',label='$i=%d$'%i) bp.strip_axis(pl.gca()) leg = pl.legend() bp.align_legend_right(leg) bp.arrow(pl.gca(), r'$i$', (14, 0.8), (10, 0.15), text_position=text_position, rad=0.3) pl.xlabel('this is the x-label') pl.ylabel('this is the y-label') pl.gcf().tight_layout() sin_test(n=4,text_position='start') pl.savefig('one.png',dpi=150) bp.set_color_cycle(bp.new_colors) sin_test(n=4,text_position='end') pl.savefig('two.png',dpi=150) pl.show()
(E, symptomatic_rate, I), (I, recovery_rate, R), (I, quarantine_rate, Q), ]) model.set_initial_conditions({S: N - I0, I: I0}) t, result = model.simulate(100) plt.figure() for compartment, incidence in result.items(): plt.plot(t, incidence, label=compartment) plt.xlabel('time [days]') plt.ylabel('incidence') plt.legend() bp.strip_axis(plt.gca()) plt.gcf().tight_layout() plt.savefig('SEIRQ_sim.png', dpi=300) tt = np.linspace(0, max(t), 1000) result_int = model.integrate(tt) for compartment, incidence in result_int.items(): plt.plot(tt, incidence) #plt.gcf().tight_layout() plt.savefig('SEIRQ_sim_compare_int.png', dpi=300) plt.show()