示例#1
0
 def extract_sclip(self):
     jobs = []
     
     for sample in self.samples:
         alignment_file_prefix = os.path.join("alignment", sample.name, sample.name + ".")
         sclip_directory = os.path.join("sclip", sample.name)
         sclip_file_prefix = os.path.join("sclip", sample.name, sample.name)
         
         job = concat_jobs([
             Job(command="if [ ! -d " + sclip_directory + " ]; then mkdir -p " + sclip_directory + "; fi"),
             self.get_job_max_insert_size(sample),
             bvatools.extract_sclip(alignment_file_prefix + "sorted.dup.bam", sclip_file_prefix, "$maxInsertSize"),
             samtools.index(sclip_file_prefix + ".sc.bam"),
             samtools.index(sclip_file_prefix + ".scOthers.bam"),
             igvtools.compute_tdf(sclip_file_prefix + ".sc.bam", sclip_file_prefix + ".sc.tdf")
         ], name="extract_sclip_" + sample.name)
         
         jobs.append(job)
     return jobs
示例#2
0
    def metrics(self):
        jobs = []
        for sample in self.samples:
            file_prefix = os.path.join("alignment", sample.name, sample.name + ".sorted.dup.")
            input = file_prefix + "bam"

            job = picard.collect_multiple_metrics(input, file_prefix + "all.metrics")
            job.name = "picard_collect_multiple_metrics." + sample.name
            jobs.append(job)

            # Compute genome coverage
            job = gatk.depth_of_coverage(input, file_prefix + "all.coverage")
            job.name = "gatk_depth_of_coverage.genome." + sample.name
            jobs.append(job)

            job = igvtools.compute_tdf(input, input + ".tdf")
            job.name = "igvtools_compute_tdf." + sample.name
            jobs.append(job)
        return jobs
示例#3
0
    def metrics(self):
        """
        Compute metrics and generate coverage tracks per sample. Multiple metrics are computed at this stage:
        Number of raw reads, Number of filtered reads, Number of aligned reads, Number of duplicate reads,
        Median, mean and standard deviation of insert sizes of reads after alignment, percentage of bases
        covered at X reads (%_bases_above_50 means the % of exons bases which have at least 50 reads)
        whole genome or targeted percentage of bases covered at X reads (%_bases_above_50 means the % of exons
        bases which have at least 50 reads). A TDF (.tdf) coverage track is also generated at this step
        for easy visualization of coverage in the IGV browser.
        """

        jobs = []
        for sample in self.samples:
            input_file_prefix = os.path.join(
                "alignment", sample.name, sample.name + ".matefixed.sorted.")
            input = input_file_prefix + "bam"

            job = picard.collect_multiple_metrics(
                input, input_file_prefix + "all.metrics")
            job.name = "picard_collect_multiple_metrics." + sample.name
            job.samples = [sample]
            jobs.append(job)

            # Compute genome or target coverage with BVATools
            job = bvatools.depth_of_coverage(
                input,
                input_file_prefix + "coverage.tsv",
                bvatools.resolve_readset_coverage_bed(sample.readsets[0]),
                other_options=config.param('bvatools_depth_of_coverage',
                                           'other_options',
                                           required=False))
            job.name = "bvatools_depth_of_coverage." + sample.name
            job.samples = [sample]
            jobs.append(job)

            job = igvtools.compute_tdf(input, input + ".tdf")
            job.name = "igvtools_compute_tdf." + sample.name
            job.samples = [sample]
            jobs.append(job)

        return jobs
    def metrics(self):
        """
        Compute metrics and generate coverage tracks per sample. Multiple metrics are computed at this stage:
        Number of raw reads, Number of filtered reads, Number of aligned reads, Number of duplicate reads,
        Median, mean and standard deviation of insert sizes of reads after alignment, percentage of bases
        covered at X reads (%_bases_above_50 means the % of exons bases which have at least 50 reads)
        whole genome or targeted percentage of bases covered at X reads (%_bases_above_50 means the % of exons
        bases which have at least 50 reads). A TDF (.tdf) coverage track is also generated at this step
        for easy visualization of coverage in the IGV browser.
        """

        jobs = []
        for sample in self.samples:
            input_file_prefix = os.path.join("alignment", sample.name, sample.name + ".matefixed.sorted.")
            input = input_file_prefix + "bam"

            job = picard.collect_multiple_metrics(input, input_file_prefix + "all.metrics")
            job.name = "picard_collect_multiple_metrics." + sample.name
            jobs.append(job)

            # Compute genome or target coverage with BVATools
            job = bvatools.depth_of_coverage(
                input,
                input_file_prefix + "coverage.tsv",
                bvatools.resolve_readset_coverage_bed(sample.readsets[0]),
                other_options=config.param('bvatools_depth_of_coverage', 'other_options', required=False)
            )

            job.name = "bvatools_depth_of_coverage." + sample.name
            jobs.append(job)

            job = igvtools.compute_tdf(input, input + ".tdf")
            job.name = "igvtools_compute_tdf." + sample.name
            jobs.append(job)

        return jobs
示例#5
0
    def metrics(self):
        """
        Compute metrics and generate coverage tracks per sample. Multiple metrics are computed at this stage:
        Number of raw reads, Number of filtered reads, Number of aligned reads, Number of duplicate reads,
        Median, mean and standard deviation of insert sizes of reads after alignment, percentage of bases
        covered at X reads (%_bases_above_50 means the % of exons bases which have at least 50 reads)
        whole genome or targeted percentage of bases covered at X reads (%_bases_above_50 means the % of exons
        bases which have at least 50 reads). A TDF (.tdf) coverage track is also generated at this step
        for easy visualization of coverage in the IGV browser.
        """

        # check the library status
        library, bam = {}, {}
        for readset in self.readsets:
            if not library.has_key(readset.sample):
                library[readset.sample] = "SINGLE_END"
            if readset.run_type == "PAIRED_END":
                library[readset.sample] = "PAIRED_END"
            if not bam.has_key(readset.sample):
                bam[readset.sample] = ""
            if readset.bam:
                bam[readset.sample] = readset.bam

        jobs = []
        created_interval_lists = []
        for sample in self.samples:
            file_prefix = os.path.join("alignment", sample.name,
                                       sample.name + ".sorted.dedup.")
            coverage_bed = bvatools.resolve_readset_coverage_bed(
                sample.readsets[0])

            candidate_input_files = [[file_prefix + "bam"]]
            if bam[sample]:
                candidate_input_files.append([bam[sample]])
            [input] = self.select_input_files(candidate_input_files)

            job = picard.collect_multiple_metrics(input,
                                                  re.sub(
                                                      "bam", "all.metrics",
                                                      input),
                                                  library_type=library[sample])
            job.name = "picard_collect_multiple_metrics." + sample.name
            job.samples = [sample]
            jobs.append(job)

            # Compute genome coverage with GATK
            job = gatk.depth_of_coverage(input,
                                         re.sub("bam", "all.coverage", input),
                                         coverage_bed)
            job.name = "gatk_depth_of_coverage.genome." + sample.name
            job.samples = [sample]
            jobs.append(job)

            # Compute genome or target coverage with BVATools
            job = bvatools.depth_of_coverage(
                input,
                re.sub("bam", "coverage.tsv", input),
                coverage_bed,
                other_options=config.param('bvatools_depth_of_coverage',
                                           'other_options',
                                           required=False))
            job.name = "bvatools_depth_of_coverage." + sample.name
            job.samples = [sample]
            jobs.append(job)

            if coverage_bed:
                # Get on-target reads (if on-target context is detected)
                ontarget_bam = re.sub("bam", "ontarget.bam", input)
                flagstat_output = re.sub("bam", "bam.flagstat", ontarget_bam)
                job = concat_jobs([
                    bedtools.intersect(input, ontarget_bam, coverage_bed),
                    samtools.flagstat(ontarget_bam, flagstat_output)
                ])
                job.name = "ontarget_reads." + sample.name
                job.removable_files = [ontarget_bam]
                job.samples = [sample]
                jobs.append(job)

                # Compute on target percent of hybridisation based capture
                interval_list = re.sub("\.[^.]+$", ".interval_list",
                                       coverage_bed)
                if not interval_list in created_interval_lists:
                    job = tools.bed2interval_list(None, coverage_bed,
                                                  interval_list)
                    job.name = "interval_list." + os.path.basename(
                        coverage_bed)
                    jobs.append(job)
                    created_interval_lists.append(interval_list)
                file_prefix = os.path.join("alignment", sample.name,
                                           sample.name + ".sorted.dedup.")
                job = picard.calculate_hs_metrics(file_prefix + "bam",
                                                  file_prefix + "onTarget.tsv",
                                                  interval_list)
                job.name = "picard_calculate_hs_metrics." + sample.name
                job.samples = [sample]
                jobs.append(job)

            # Calculate the number of reads with higher mapping quality than the threshold passed in the ini file
            job = concat_jobs([
                samtools.view(
                    input, re.sub(".bam", ".filtered_reads.counts.txt", input),
                    "-c " + config.param('mapping_quality_filter',
                                         'quality_threshold'))
            ])
            job.name = "mapping_quality_filter." + sample.name
            job.samples = [sample]
            jobs.append(job)

            # Calculate GC bias
            # For captured analysis
            #if coverage_bed:
            #target_input = re.sub(".bam", ".targeted.bam", input)
            #job = concat_jobs([
            #bedtools.intersect(
            #input,
            #target_input,
            #coverage_bed
            #)
            #bedtools.coverage(
            #target_input,
            #re.sub(".bam", ".gc_cov.1M.txt", target_input)
            #),
            #metrics.gc_bias(
            #re.sub(".bam", ".gc_cov.1M.txt", target_input),
            #re.sub(".bam", ".GCBias_all.txt", target_input)
            #)
            #])
            # Or for whole genome analysis
            #else:
            gc_content_file = re.sub(".bam", ".gc_cov.1M.txt", input)
            job = bedtools.coverage(input, gc_content_file, coverage_bed)
            if coverage_bed:
                gc_content_on_target_file = re.sub(".bam",
                                                   ".gc_cov.1M.on_target.txt",
                                                   input)
                gc_ontent_target_job = bedtools.intersect(
                    gc_content_file, gc_content_on_target_file, coverage_bed)
                gc_content_file = gc_content_on_target_file
                job = concat_jobs([job, gc_ontent_target_job])
            job = concat_jobs([
                job,
                metrics.gc_bias(gc_content_file,
                                re.sub(".bam", ".GCBias_all.txt", input))
            ])
            job.name = "GC_bias." + sample.name
            job.samples = [sample]
            jobs.append(job)

            job = igvtools.compute_tdf(input, input + ".tdf")
            job.name = "igvtools_compute_tdf." + sample.name
            job.samples = [sample]
            jobs.append(job)

        return jobs