def concat_nums_2_length(): n_list = [] i = 1 while len(n_list) < 1000001: n_list += digits_list(i) i += 1 return map(str, n_list)
def cubic_perms(n_perms): cubed_dict = {} for i in count(100): ccc = int_from_digits(sorted(digits_list(i**3), reverse=True)) if ccc in cubed_dict: cubed_dict[ccc].append(i) if len(cubed_dict[ccc]) > n_perms - 1: # print(cubed_dict[ccc]) return cubed_dict[ccc][0]**3 else: cubed_dict.setdefault(ccc, []).append(i)
def is_1_2_3_4_5_6_7_8_9_0(n): digs = digits_list(n) if len(digs) != 19: return False the_digs = [digs[index] for index in range(0, 19, 2)] for i in range(10): if i == 9 and the_digs[9] == 0: return True if i + 1 != the_digs[i]: return False return True
def is_bouncy(n): digits = digits_list(n) increasing = False decreasing = False for i in range(0, len(digits)-1): if digits[i+1] < digits[i]: increasing = True elif digits[i+1] > digits[i]: decreasing = True if increasing and decreasing: return True return False
def p049(): four_dig_primes = [i for i in range(1000, 10000) if is_prime(i)] num_4dig_primes = len(four_dig_primes) prime_perms = defaultdict(list) for prime in four_dig_primes: sorted_digs = tuple(sorted(digits_list(prime))) prime_perms[sorted_digs].append(prime) topop = [k for k, v in prime_perms.items() if len(v) < 3] for toop in topop: prime_perms.pop(toop) validsets = [] for k, v in prime_perms.items(): for combo in combinations(v, 3): if combo[1] - combo[0] == combo[2] - combo[1]: validsets.append(combo) return int("".join(str(n) for n in validsets[1]))
def p020(): return sum(digits_list(factorial(100)))
def is_circ_prime(n): digist = [int(j) for j in digits_list(n)] return all((is_prime(int_from_digits(i)) for i in rotations_gen(digist)))
def is_digit_factorial(n): return n == sum(map(factorial, digits_list(n)))
def digit_factorial(n): return sum(digfact[i] for i in digits_list(n))
def p056(): return max( (sum(digits_list(i**j)) for i in range(1, 100) for j in range(1, 100)))
def digit_powers(number, power): return number == sum(map(lambda x: x**power, digits_list(number)))