示例#1
0
    def state_space(self, speed, nominal=False):
        """
        Returns the A and B matrices for the Whipple model linearized about
        the upright constant velocity configuration.


        Parameters
        ----------
        speed : float
            The speed of the bicycle.
        nominal : boolean, optional
            The default is false and uarrays are returned with the calculated
            uncertainties. If true ndarrays are returned without uncertainties.

        Returns
        -------

        A : ndarray, shape(4,4)
            The state matrix.
        B : ndarray, shape(4,2)
            The input matrix.

        Notes
        -----
        ``A`` and ``B`` describe the Whipple model in state space form:

            x' = A * x + B * u

        where

        The states are [roll angle,
                        steer angle,
                        roll rate,
                        steer rate]

        The inputs are [roll torque,
                        steer torque]

        If you have a flywheel defined, body D, it will completely be ignored
        in these results. These results are strictly for the Whipple bicycle
        model.

        """

        M, C1, K0, K2 = self.canonical()

        g = self.parameters['Benchmark']['g']

        A, B = bicycle.ab_matrix(M, C1, K0, K2, speed, g)

        if nominal is True:
            return (unumpy.nominal_values(A), unumpy.nominal_values(B))
        elif nominal is False:
            return A, B
        else:
            raise ValueError('nominal must be True or False')
示例#2
0
    def state_space(self, speed, nominal=False):
        """
        Returns the A and B matrices for the Whipple model linearized about
        the upright constant velocity configuration.


        Parameters
        ----------
        speed : float
            The speed of the bicycle.
        nominal : boolean, optional
            The default is false and uarrays are returned with the calculated
            uncertainties. If true ndarrays are returned without uncertainties.

        Returns
        -------

        A : ndarray, shape(4,4)
            The state matrix.
        B : ndarray, shape(4,2)
            The input matrix.

        Notes
        -----
        ``A`` and ``B`` describe the Whipple model in state space form:

            x' = A * x + B * u

        where

        The states are [roll angle,
                        steer angle,
                        roll rate,
                        steer rate]

        The inputs are [roll torque,
                        steer torque]

        If you have a flywheel defined, body D, it will completely be ignored
        in these results. These results are strictly for the Whipple bicycle
        model.

        """

        M, C1, K0, K2 = self.canonical()

        g = self.parameters['Benchmark']['g']

        A, B = bicycle.ab_matrix(M, C1, K0, K2, speed, g)

        if nominal is True:
            return (unumpy.nominal_values(A), unumpy.nominal_values(B))
        elif nominal is False:
            return A, B
        else:
            raise ValueError('nominal must be True or False')
示例#3
0
    def eig(self, speeds):
        '''Returns the eigenvalues and eigenvectors of the Whipple bicycle
        model linearized about the nominal configuration.

        Parameters
        ----------
        speeds : ndarray, shape (n,) or float
            The speed at which to calculate the eigenvalues.

        Returns
        -------
        evals : ndarray, shape (n, 4)
            eigenvalues
        evecs : ndarray, shape (n, 4, 4)
            eigenvectors

        Notes
        -----
        If you have a flywheel defined, body D, it will completely be ignored
        in these results. These results are strictly for the Whipple bicycle
        model.

        '''
        # this allows you to enter a float
        try:
            speeds.shape
        except AttributeError:
            speeds = np.array([speeds])

        par = io.remove_uncertainties(self.parameters['Benchmark'])

        M, C1, K0, K2 = bicycle.benchmark_par_to_canonical(par)

        m, n = 4, speeds.shape[0]
        evals = np.zeros((n, m), dtype='complex128')
        evecs = np.zeros((n, m, m), dtype='complex128')
        for i, speed in enumerate(speeds):
            A, B = bicycle.ab_matrix(M, C1, K0, K2, speed, par['g'])
            w, v = np.linalg.eig(A)
            evals[i] = w
            evecs[i] = v

        return evals, evecs
示例#4
0
    def eig(self, speeds):
        '''Returns the eigenvalues and eigenvectors of the Whipple bicycle
        model linearized about the nominal configuration.

        Parameters
        ----------
        speeds : ndarray, shape (n,) or float
            The speed at which to calculate the eigenvalues.

        Returns
        -------
        evals : ndarray, shape (n, 4)
            eigenvalues
        evecs : ndarray, shape (n, 4, 4)
            eigenvectors

        Notes
        -----
        If you have a flywheel defined, body D, it will completely be ignored
        in these results. These results are strictly for the Whipple bicycle
        model.

        '''
        # this allows you to enter a float
        try:
            speeds.shape
        except AttributeError:
            speeds = np.array([speeds])

        par = io.remove_uncertainties(self.parameters['Benchmark'])

        M, C1, K0, K2 = bicycle.benchmark_par_to_canonical(par)

        m, n = 4, speeds.shape[0]
        evals = np.zeros((n, m), dtype='complex128')
        evecs = np.zeros((n, m, m), dtype='complex128')
        for i, speed in enumerate(speeds):
            A, B = bicycle.ab_matrix(M, C1, K0, K2, speed, par['g'])
            w, v = np.linalg.eig(A)
            evals[i] = w
            evecs[i] = v

        return evals, evecs