示例#1
0
pos = init_pos
window_name = "Known Map Navigation Demo"

# Read Image
img = cv2.flip(cv2.imread("Maps/map.png"),0)
img[img>128] = 255
img[img<=128] = 0
m = np.asarray(img)
m = cv2.cvtColor(m, cv2.COLOR_RGB2GRAY)
m = m.astype(float) / 255.
m_dilate = 1-cv2.dilate(1-m, np.ones((40,40))) # Configuration-Space
img = img.astype(float)/255.

# Simulation Model
from bicycle_model import KinematicModel
car = KinematicModel(l=20, d=5, wu=5, wv=2, car_w=14, car_f=25, car_r=5)
car.init_state(init_pos)

# Path Tracking Controller
if control_type == 0:
    from PathTracking.bicycle_pid import PidControl
    controller = PidControl(kp=0.03, ki=0.00005, kd=0.08)
elif control_type == 1:
    from PathTracking.bicycle_pure_pursuit import PurePursuitControl
    controller = PurePursuitControl(kp=0.7,Lfc=10)
elif control_type == 2:
    from PathTracking.bicycle_stanley import StanleyControl
    controller = StanleyControl(kp=0.5)
elif control_type == 3:
    from PathTracking.bicycle_lqr import LQRControl
    controller = LQRControl()
collision_count = 0

# Read Image
img = cv2.flip(cv2.imread("Maps/map.png"), 0)
img[img > 128] = 255
img[img <= 128] = 0
m = np.asarray(img)
m = cv2.cvtColor(m, cv2.COLOR_RGB2GRAY)
m = m.astype(float) / 255.
m_dilate = 1 - cv2.dilate(1 - m, np.ones((30, 30)))  # Configuration-Space
img = img.astype(float) / 255.

# Lidar
lmodel = LidarModel(m)
#car = KinematicModel()
car = KinematicModel(l=20, d=5, wu=5, wv=2, car_w=14, car_f=25, car_r=5)
control_type = 2
if control_type == 0:
    controller = PidControl()
elif control_type == 1:
    controller = PurePursuitControl(kp=0.7, Lfc=10)
elif control_type == 2:
    controller = StanleyControl(kp=0.5)
elif control_type == 3:
    controller = LQRControl()
else:
    controller = PurePursuitControl(kp=0.7, Lfc=10)

pos = (100, 200, 0)
car.x = 100
car.y = 200
示例#3
0
from bicycle_model import KinematicModel
from grid_map import GridMap
from utils import *

# Read Image
img = cv2.flip(cv2.imread("../Maps/map.png"), 0)
img[img > 128] = 255
img[img <= 128] = 0
m = np.asarray(img)
m = cv2.cvtColor(m, cv2.COLOR_RGB2GRAY)
m = m.astype(float) / 255.
img = img.astype(float) / 255.

# Lidar
lmodel = LidarModel(m)
car = KinematicModel()
pos = (100, 200, 0)
car.x = 100
car.y = 200
car.yaw = 0

gm = GridMap([0.5, -0.5, 5.0, -5.0], gsize=3)

while (True):
    print("\rState: " + car.state_str(), end="\t")
    car.update()
    pos = (car.x, car.y, car.yaw)
    sdata = lmodel.measure(pos)
    plist = EndPoint(pos, [61, -120, 120], sdata)

    # Map
示例#4
0
    # Path
    path = path_generator.path2()
    print("\rpath=")
    print(path)
    img_path = np.ones((600, 600, 3))
    print("\rimg_path 1=")
    print(img_path)
    for i in range(path.shape[0] - 1):
        cv2.line(img_path, (int(path[i, 0]), int(path[i, 1])),
                 (int(path[i + 1, 0]), int(path[i + 1, 1])), (1.0, 0.5, 0.5),
                 1)
    print("\rimg_path 2=")
    print(img_path)
    # Initialize Car
    car = KinematicModel()
    start = (50, 300, 0)
    car.init_state(start)

    controller = PurePursuitControl(kp=1, Lfc=10)
    controller.set_path(path)

    while (True):
        print("\rState: " + car.state_str(), end="\t")
        # ================= Control Algorithm =================
        # PID Longitude Control
        #print("\rpath=")
        #print(path)
        end_dist = np.hypot(path[-1, 0] - car.x, path[-1, 1] - car.y)
        target_v = 40 if end_dist > 265 else 0
        next_a = 0.1 * (target_v - car.v)
    import cv2
    import path_generator
    import sys
    sys.path.append("../")
    from bicycle_model import KinematicModel

    # Path
    path = path_generator.path2()
    img_path = np.ones((600, 600, 3))
    for i in range(path.shape[0] - 1):
        cv2.line(img_path, (int(path[i, 0]), int(path[i, 1])),
                 (int(path[i + 1, 0]), int(path[i + 1, 1])), (1.0, 0.5, 0.5),
                 1)

    # Initialize Car
    car = KinematicModel()
    start = (50, 300, 0)
    car.init_state(start)
    controller = StanleyControl(kp=0.5)
    controller.set_path(path)

    while (True):
        #print("\rState: "+car.state_str(), end="\t")

        # PID Longitude Control
        end_dist = np.hypot(path[-1, 0] - car.x, path[-1, 1] - car.y)
        target_v = 40 if end_dist > 265 else 0
        next_a = 0.1 * (target_v - car.v)

        # Stanley Lateral Control
        state = {