示例#1
0
    def run_positions_test(self,
                           grid_size,
                           illum_size,
                           data_size,
                           ntime,
                           npol,
                           nchan,
                           polmajor,
                           dtype=numpy.complex64):
        TEST_OFFSET = 1

        gridshape = (ntime, nchan, npol, grid_size, grid_size)
        ishape = (ntime, nchan, npol, data_size)
        illum_shape = (ntime, nchan, npol, data_size, illum_size, illum_size)

        # Create grid and illumination pattern
        grid = bifrost.zeros(shape=gridshape, dtype=numpy.complex64)
        illum = self._create_illum(illum_size, data_size, ntime, npol, nchan)

        # Create data
        data = self._create_data(data_size, ntime, nchan, npol, dtype=dtype)

        # Create the locations
        locs = self._create_locs(data_size, ntime, nchan, npol, illum_size,
                                 grid_size - illum_size)

        # Grid using a naive method
        gridnaive = self.naive_romein(gridshape, illum, data,
                                      locs[0, :] + TEST_OFFSET,
                                      locs[1, :] + TEST_OFFSET,
                                      locs[2, :] + TEST_OFFSET, ntime, npol,
                                      nchan, data_size)

        # Transpose for non pol-major kernels
        if not polmajor:
            data = data.transpose((0, 1, 3, 2)).copy()
            locs = locs.transpose((0, 1, 2, 4, 3)).copy()
            illum = illum.transpose((0, 1, 3, 2, 4, 5)).copy()

        grid = grid.copy(space='cuda')
        data = data.copy(space='cuda')
        illum = illum.copy(space='cuda')
        locs = locs.copy(space='cuda')
        self.romein.init(locs, illum, grid_size, polmajor=polmajor)

        # Offset
        locs = locs.copy(space='system')
        locs += TEST_OFFSET
        locs = locs.copy(space='cuda')

        self.romein.set_positions(locs)
        self.romein.execute(data, grid)
        grid = grid.copy(space="system")

        # Compare the two methods
        numpy.testing.assert_allclose(grid, gridnaive, 1e-4, 1e-5)
示例#2
0
    def _create_illum(self,
                      illum_size,
                      data_size,
                      ntime,
                      npol,
                      nchan,
                      dtype=numpy.complex64):
        illum_shape = (ntime, nchan, npol, data_size, illum_size, illum_size)
        illum = bifrost.zeros(shape=illum_shape, dtype=dtype)
        illum += 1

        return illum
示例#3
0
    def naive_romein(self,
                     grid_shape,
                     illum,
                     data,
                     xlocs,
                     ylocs,
                     zlocs,
                     ntime,
                     npol,
                     nchan,
                     ndata,
                     dtype=numpy.complex64):

        # Unpack the ci4 data to ci8, if needed
        if data.dtype == ci4:
            data_unpacked = bifrost.ndarray(shape=data.shape, dtype='ci8')
            unpack(data, data_unpacked)
            data = data_unpacked

        # Create the output grid
        grid = bifrost.zeros(shape=grid_shape, dtype=dtype)

        # Combine axes
        xlocs_flat = xlocs.reshape(-1, ndata)
        ylocs_flat = ylocs.reshape(-1, ndata)
        data_flat = data.reshape(-1, ndata)
        grid_flat = grid.reshape(-1, grid.shape[-2], grid.shape[-1])
        illum_flat = illum.reshape(-1, ndata, illum.shape[-2], illum.shape[-1])

        # Excruciatingly slow, but it's just for testing purposes...
        # Could probably use a blas based function for simplicity.
        for tcp in range(data_flat.shape[0]):
            for d in range(ndata):
                datapoint = data_flat[tcp, d]
                if data.dtype != dtype:
                    try:
                        datapoint = dtype(datapoint[0] + 1j * datapoint[1])
                    except IndexError:
                        datapoint = dtype(datapoint)

                #if(d==128):
                #    print(datapoint)
                x_s = xlocs_flat[tcp, d]
                y_s = ylocs_flat[tcp, d]
                for y in range(y_s, y_s + illum_flat.shape[-2]):
                    for x in range(x_s, x_s + illum_flat.shape[-1]):
                        illump = illum_flat[tcp, d, y - y_s, x - x_s]
                        grid_flat[tcp, y, x] += datapoint * illump

        return grid
示例#4
0
 def run_contiguous_slice_copy(self, space='system'):
     a = np.random.rand(2,3,4,5)
     a = a.astype(np.float64)
     b = a.transpose(0,3,2,1)[:,1:,:,:].copy()
     c = bf.zeros(a.shape, dtype=a.dtype, space='system')
     c[...] = a
     c = c.copy(space=space)
     d = c.transpose(0,3,2,1)[:,1:,:,:].copy(space='system')
     # Use ctypes to directly access the memory
     b_data = ctypes.cast(b.ctypes.data, ctypes.POINTER(ctypes.c_double))
     b_data = np.array([b_data[i] for i in range(b.size)])
     d_data = ctypes.cast(d.ctypes.data, ctypes.POINTER(ctypes.c_double))
     d_data = np.array([d_data[i] for i in range(d.size)])
     np.testing.assert_equal(d_data, b_data)
示例#5
0
    def _create_data(self,
                     data_size,
                     ntime,
                     nchan,
                     npol,
                     dtype=numpy.complex64):
        ishape = (ntime, nchan, npol, data_size)
        data = bifrost.zeros(shape=ishape, dtype=numpy.complex64)
        data.real[...] = numpy.random.normal(0, 1.0, size=ishape)
        data.imag[...] = numpy.random.normal(0, 1.0, size=ishape)
        data *= 7
        if dtype not in (numpy.complex64, 'cf32'):
            data_quantized = bifrost.ndarray(shape=data.shape, dtype=dtype)
            quantize(data, data_quantized)
            data = data_quantized

        return data