示例#1
0
文件: linear.py 项目: esheldon/espy
    def plot_T(self, k, T, Tc=None, Tb=None):
        from biggles import FramedPlot, Curve, PlotKey

        plt=FramedPlot()

        c=Curve(k, T**2)
        c.label = '$T^2$'
        plt.add(c)
        plist = [c]

        if Tc is not None:
            cc=Curve(k,Tc**2,color='blue')
            cc.label = '$Tc^2$'
            plt.add(cc)
            plist.append(cc)

        if Tb is not None:
            tmp = where(Tb < 1.e-5, 1.e-5, Tb)
            cb=Curve(k,tmp**2,color='red')
            cb.label = '$Tb^2$'
            plt.add(cb)
            plist.append(cb)

        plt.xlog=True
        plt.ylog=True
        plt.ylabel = '$T^2'
        plt.xlabel = 'k'
        plt.yrange = [1.e-8,1.0]
        plt.aspect_ratio=1

        if Tc is not None or Tb is not None:
            key=PlotKey(0.1,0.9,plist)
            plt.add(key)

        plt.show()
示例#2
0
文件: fit.py 项目: esheldon/espy
def test_fit_nfw_dsig(rmin=0.01):

    from biggles import FramedPlot,Points,SymmetricErrorBarsY,Curve
    omega_m=0.25
    z=0.25
    n = lensing.nfw.NFW(omega_m, z)

    r200 = 1.0
    c = 5.0

    rmax = 5.0
    log_rmin = log10(rmin)
    log_rmax = log10(rmax)
    npts = 25
    logr = numpy.linspace(log_rmin,log_rmax,npts)
    r = 10.0**logr

    ds = n.dsig(r, r200, c)
    # 10% errors
    dserr = 0.1*ds
    ds += dserr*numpy.random.standard_normal(ds.size)

    guess = numpy.array([r200,c],dtype='f8')
    # add 10% error to the guess
    guess += 0.1*guess*numpy.random.standard_normal(guess.size)

    res = fit_nfw_dsig(omega_m, z, r, ds, dserr, guess)

    r200_fit = res['r200']
    r200_err = res['r200_err']

    c_fit = res['c']
    c_err = res['c_err']

    print 'Truth:'
    print '    r200: %f' % r200
    print '       c: %f' % c
    print 'r200_fit: %f +/- %f' % (r200_fit,r200_err)
    print '   c_fit: %f +/- %f' % (c_fit,c_err)
    print 'Cov:'
    print res['cov']

    logr = numpy.linspace(log_rmin,log_rmax,1000)
    rlots = 10.0**logr
    yfit = n.dsig(rlots,r200_fit,c_fit)

    plt=FramedPlot()
    plt.add(Points(r,ds,type='filled circle'))
    plt.add(SymmetricErrorBarsY(r,ds,dserr))
    plt.add(Curve(rlots,yfit,color='blue'))

    plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
    plt.ylabel = r'$\Delta\Sigma ~ [M_{sun} pc^{-2}]$'

    plt.xrange = [0.5*rmin, 1.5*rmax]
    plt.yrange = [0.5*(ds-dserr).min(), 1.5*(ds+dserr).max()]

    plt.xlog=True
    plt.ylog=True
    plt.show()
示例#3
0
文件: fit.py 项目: esheldon/espy
def plot_nfwfits_byrun(run, name, prompt=False):
    conf = lensing.files.read_config(run)
    d = lensing.sample_read(type='fit', sample=run, name=name)
    omega_m = conf['omega_m']


    rvals = numpy.linspace(d['r'].min(), d['r'].max(),1000)
    for i in xrange(d.size):
        plt = FramedPlot()  
        lensing.plotting.add_to_log_plot(plt, 
                                          d['r'][i],
                                          d['dsig'][i],
                                          d['dsigerr'][i])

        z = d['z_mean'][i]
        n = lensing.nfw.NFW(omega_m, z)
        yfit = n.dsig(rvals, d['r200_fit'][i],d['c_fit'][i])
        plt.add(Curve(rvals,yfit,color='blue'))
        plt.xlog=True
        plt.ylog=True
        plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
        plt.ylabel = r'$\Delta\Sigma ~ [M_{sun} pc^{-2}]$'
        if prompt:
            plt.show()
            raw_input('hit a key: ')
        else:
            epsfile='/home/esheldon/tmp/plots/desmocks-nfwfit-%02i.eps' % i
            print 'Writing epsfile:',epsfile
            plt.write_eps(epsfile)
示例#4
0
def plotprimedens(n):
    pd = primedens(n)
    steps = range(len(pd))
    from biggles import FramedPlot, Curve
    g = FramedPlot()
    g.add(Curve(steps,pd))
    g.show()
    return
示例#5
0
文件: invert.py 项目: esheldon/espy
def test_interp_hybrid():
    """
    Send y0,y1 with one or both less than zero to test the
    hybrid offset scheme
    """
    slope = -2.0
    #xvals = 0.1+linspace(0.0,8.0,9)
    xvals = 10.0**linspace(0.0,1.0,10)
    yvals = xvals**slope
    #yerr = 0.5*yvals
    #yerr = sqrt(yvals)
    yerr = yvals.copy()
    yerr[:] = 0.05

    #xfine = 0.1+linspace(0.0,8.0,1000)
    xfine = 10.0**linspace(0.0,1.0,1000)
    yfine = xfine**slope 

    #yerr = yvals.copy()
    #yerr[:] = 2

    plt=FramedPlot()
    plt.xrange = [0.5*xvals.min(), 1.5*xvals.max()]
    plt.xlog=True
    #plt.ylog=True
    plt.add(Points(xvals,yvals,type='filled circle',size=1))
    plt.add(Curve(xfine,yfine,color='blue'))
    #w=where1( (yvals-yerr) > 1.e-5 )
    #plt.add(SymmetricErrorBarsY(xvals[w],yvals[w],yerr[w]))
    plt.add(SymmetricErrorBarsY(xvals,yvals,yerr))

    # make points in between consecutive xvals,yvals so we
    # can use hybrid 2-point function
    xi = numpy.zeros(xvals.size-1,dtype='f8')
    yi = numpy.zeros(xi.size,dtype='f8')
    for i in xrange(xi.size):

        logx = (log10(xvals[i+1])+log10(xvals[i]))/2.0
        xi[i] = 10.0**logx
        yi[i],amp,slope,off = interp_hybrid(xvals[i], xvals[i+1], 
                                            yvals[i], yvals[i+1],
                                            yerr[i], yerr[i+1], 
                                            xi[i],more=True)
        
        print 'amp:',amp
        print 'slope:',slope
        print 'off:',off

    print xvals
    print xi
    print yi
    plt.add( Points(xi, yi, type='filled circle', size=1, color='red'))

    plt.show()
示例#6
0
def plot_sub_pixel(ellip,theta, show=False):
    import biggles
    from biggles import PlotLabel,FramedPlot,Table,Curve,PlotKey,Points
    from pcolors import rainbow

    f=subpixel_file(ellip,theta,'fits')
    data = eu.io.read(f)
    colors = rainbow(data.size,'hex')

    pltSigma = FramedPlot()
    pltSigma.ylog=1
    pltSigma.xlog=1

    curves=[]
    for j in xrange(data.size):
        sigest2 = (data['Irr'][j,:] + data['Icc'][j,:])/2

        pdiff = sigest2/data['sigma'][j]**2 -1
        nsub=numpy.array(data['nsub'][j,:])

        #pc = biggles.Curve(nsub, pdiff, color=colors[j])
        pp = Points(data['nsub'][j,:], pdiff, type='filled circle',color=colors[j])

        pp.label = r'$\sigma: %0.2f$' % data['sigma'][j]
        curves.append(pp)
        pltSigma.add(pp)
        #pltSigma.add(pc)
        #pltSigma.yrange=[0.8,1.8]
        #pltSigma.add(pp)


    c5 = Curve(linspace(1,8, 20), .005+zeros(20))
    pltSigma.add(c5)

    key=PlotKey(0.95,0.95,curves,halign='right',fontsize=1.7)
    key.key_vsep=1

    pltSigma.add(key)
    pltSigma.xlabel='N_{sub}'
    pltSigma.ylabel=r'$\sigma_{est}^2  /\sigma_{True}^2 - 1$'

    lab=PlotLabel(0.05,0.07,r'$\epsilon: %0.2f \theta: %0.2f$' % (ellip,theta),halign='left')
    pltSigma.add(lab)

    pltSigma.yrange = [1.e-5,0.1]
    pltSigma.xrange = [0.8,20]
    if show:
        pltSigma.show()

    epsfile=subpixel_file(ellip,theta,'eps')

    print("Writing eps file:",epsfile)
    pltSigma.write_eps(epsfile)
示例#7
0
文件: linear.py 项目: esheldon/espy
    def plot_pk(self,k,pk):
        from biggles import FramedPlot, Curve

        plt=FramedPlot()
        plt.add(Curve(k,pk))
        plt.xlog=True
        plt.ylog=True

        plt.xlabel = r'$k [h/Mpc]$'
        plt.ylabel = r'$P_{lin}(k)$'
        plt.aspect_ratio = 1
        plt.show()
示例#8
0
文件: nfw.py 项目: esheldon/espy
    def plot_m(self, r200, c):
        from biggles import FramedPlot, Curve
        n=1000
        r = numpy.linspace(0.01, 20.0,n)
        m = self.m(r, r200, c)

        plt=FramedPlot()
        plt.add( Curve(r,m) )
        plt.xlog=True
        plt.ylog=True

        plt.show()
示例#9
0
文件: plotting.py 项目: esheldon/espy
def plot_dsig_one(r, dsig, dsigerr, **kw):
    """
    plot delta sigma

    useful if adding to an existing plot

    parameters
    ----------
    r: array
        radius
    dsig: array
        delta sigma
    dsigerr: array
        error on delta sigma
    """

    from biggles import FramedPlot

    nbin=1
    _set_biggles_defs(nbin)

    visible=kw.get('visible',True)
    xlog=kw.get('xlog',True)
    ylog=kw.get('ylog',True)
    aspect_ratio=kw.get('aspect_ratio',1)

    is_ortho=kw.get('is_ortho',False)

    plt=kw.get('plt',None)

    if plt is None:
        plt=FramedPlot()
        plt.aspect_ratio=aspect_ratio
        plt.xlog=xlog
        plt.ylog=ylog

        plt.xlabel = LABELS['rproj']
        if is_ortho:
            plt.ylabel = LABELS['osig']
        else:
            plt.ylabel = LABELS['dsig']

    xrng, yrng = _add_dsig_to_plot(plt, r, dsig, dsigerr, **kw)
    plt.xrange=xrng
    plt.yrange=yrng

    if visible:
        plt.show()

    return plt
示例#10
0
    def plot_ellip_vs_input(self, show=False):
        '''
        Plot the measured ellip as a function of the input for sigma_index=0
        which is a reasonably large object
        '''
        import biggles
        from biggles import PlotLabel,FramedPlot,Table,Curve,PlotKey,Points
        from pcolors import rainbow
        import pprint

        data = self.read()
        w=where1(data['sigma_index'] == 10)
        data = data[w]
        
        e1_input, e2_input, Tinput = util.mom2ellip(data['Irr_input'],
                                                    data['Irc_input'],
                                                    data['Icc_input'])
        e1_meas, e2_meas, Tinput = util.mom2ellip(data['Irr_meas'],
                                                  data['Irc_meas'],
                                                  data['Icc_meas'])

        einput = sqrt(e1_input**2 + e2_input**2)
        emeas = sqrt(e1_meas**2 + e2_meas**2)

        plt=FramedPlot()

        p = Points(einput,emeas, type='filled circle')
        plt.add(p)
        plt.xlabel=r'$\epsilon_{in}$'
        plt.ylabel=r'$\epsilon_{meas}$'

        sig=sqrt((data['Irr_meas'][0]+data['Icc_meas'][0])/2)
        lab1=PlotLabel(0.1,0.9,self.model, halign='left')
        lab2=PlotLabel(0.1,0.8,r'$\sigma: %0.2f$' % sig, halign='left')
        plt.add(lab1,lab2)


        einput.sort()
        c = Curve(einput, einput, color='red')
        c.label = r'$\epsilon_{input} = \epsilon_{meas}$'
        key=PlotKey(0.95,0.07,[c], halign='right')
        plt.add(c)
        plt.add(key)
        if show:
            plt.show()

        epsfile=self.epsfile('ellip-vs-input')
        print("Writing eps file:",epsfile)
        plt.write_eps(epsfile)
示例#11
0
def plot_boss_geometry(color=None, colorwheel=None, plt=None, width=1, show=True,
                       region=None):
    """
    Plot the boundaries in the boss_survey.par file
    """
    import esutil as eu
    import biggles
    from biggles import FramedPlot, Curve

    bg = read_boss_geometry()

    if plt is None:
        plt = FramedPlot()
        plt.xlabel=r'$\lambda$'
        plt.ylabel=r'$\eta$'

    if color is not None:
        colors = [color]*len(bg)
    elif colorwheel is not None:
        colors = colorwheel
    else:
        colors = ['red','blue','green','magenta','navyblue','seagreen',
                  'firebrick','cadetblue','green4']
        

    for i in xrange(len(bg)):
        b = bg[i]
        color = colors[i % len(colors)]
        c = eu.plotting.bbox( b['clambdaMin'], b['clambdaMax'], b['cetaMin'], b['cetaMax'],
                             color=color, width=width)
        plt.add(c)

    if region == 'ngc':
        plt.yrange = [-40.,50.]
        plt.xrange = [-80.,80.]
    elif region == 'sgc':
        plt.yrange = [105.,165.]
        plt.xrange = [-60.,60.]
    else:
        plt.yrange = [-40.,165.]
        plt.xrange = [-80.,80.]


    plt.aspect_ratio = (plt.yrange[1]-plt.yrange[0])/(plt.xrange[1]-plt.xrange[0])

    if show:
        plt.show()

    return plt
示例#12
0
文件: linear.py 项目: esheldon/espy
    def plot_xi(self, r, xi):
        from biggles import FramedPlot, Curve
        minval = 1.e-4

        xi = where(xi < minval, minval, xi)

        plt=FramedPlot()
        plt.add(Curve(r,xi))
        plt.xlog=True
        plt.ylog=True

        plt.xlabel = r'$r [Mpc/h]$'
        plt.ylabel = r'$\xi_{lin}(r)$'
        plt.aspect_ratio=1
        plt.show()
示例#13
0
    def plot_size_vs_input(self, show=False):
        '''
        Plot recovered size vs input for ellip=0, which is ellip_index=0
        '''

        import biggles
        from biggles import PlotLabel,FramedPlot,Table,Curve,PlotKey,Points
        from pcolors import rainbow
        import pprint

        data = self.read()
        w=where1(data['ellip_index'] == 0)
        data = data[w]

        siginput = sqrt(data['Irr_input'])
        sigmeas  = sqrt(data['Irr_meas'])


        pars=numpy.polyfit(siginput, sigmeas, 1)
        print("offset:",pars[1])
        print("slope: ",pars[0])
        print("IGNORING OFFSET")

        plt=FramedPlot()

        p = Points(siginput,sigmeas, type='filled circle')
        plt.add(p)
        plt.xlabel=r'$\sigma_{in}$'
        plt.ylabel=r'$\sigma_{meas}$'

        lab=PlotLabel(0.1,0.9,self.model)
        plt.add(lab)

        yfit2=pars[0]*siginput
        cfit2=Curve(siginput, yfit2, color='steel blue')
        cfit2.label = r'$%0.2f \sigma_{in}$' % pars[0]

        plt.add( cfit2 )

        key=PlotKey(0.95,0.07,[cfit2], halign='right')
        plt.add(key)
        if show:
            plt.show()

        epsfile=self.epsfile('size-vs-input')
        print("Writing eps file:",epsfile)
        plt.write_eps(epsfile)
示例#14
0
    def compare_all_other(self, type, show=True):
        
        fdict=self.all_other_fdict(type)

        # this is the original file.  It has the redshifts
        orig = zphot.weighting.read_training(fdict['origfile'])

        # this is the outputs
        num = zphot.weighting.read_num(fdict['numfile1'])

        # this is the weights file
        weights = zphot.weighting.read_training(fdict['wfile2'])

        # recoverable set
        w_recoverable = where1(num['num'] > 0)
        # this is actually the indexes back into the "orig" file
        w_keep = num['photoid'][w_recoverable]

        # get the z values for these validation objects
        zrec = orig['z'][w_keep]

        binsize=0.0314
        valid_dict = histogram(zrec, min=0, max=1.1, binsize=binsize, more=True)
        plt=FramedPlot()

        vhist = valid_dict['hist']/(float(valid_dict['hist'].sum()))
        pvhist=biggles.Histogram(vhist, x0=valid_dict['low'][0], binsize=binsize)
        pvhist.label = 'truth'

        weights_dict = histogram(weights['z'], min=0, max=1.1, binsize=binsize,
                                 weights=weights['weight'], more=True)
        whist = weights_dict['whist']/weights_dict['whist'].sum()
        pwhist=biggles.Histogram(whist, x0=weights_dict['low'][0], 
                                 binsize=binsize, color='red')
        pwhist.label = 'weighted train'

        key = PlotKey(0.6,0.6,[pvhist,pwhist])
        plt.add(pvhist,pwhist,key)

        plt.add( biggles.PlotLabel(.8, .9, type) )

        plt.write_eps(fdict['zhistfile'])
        converter.convert(fdict['zhistfile'],dpi=90,verbose=True)
        if show:
            plt.show()
示例#15
0
文件: pcolors.py 项目: esheldon/espy
def test_rainbow():
    import numpy
    from biggles import FramedPlot, Points, Curve
    num = 20

    plt = FramedPlot()

    x = numpy.linspace(0.0, 1.0, num)
    y = x**2

    colors = rainbow(num, 'hex')

    for i in xrange(num):
        p = Points([x[i]], [y[i]], type='filled circle', 
                   color=colors[i])
        c = Curve([x[i]],[y[i]], color=colors[i])
        plt.add(p,c)
    plt.show()
示例#16
0
文件: plotting.py 项目: esheldon/espy
def plot_drho(comb=None, r=None, drho=None, drhoerr=None, 
              color='black',type='filled circle',
              nolabel=False, noshow=False, minval=1.e-5,
              aspect_ratio=1):
    """
    This one stands alone. 
    """

    if comb is not None:
        r=comb['rdrho']
        drho=comb['drho']
        drhoerr=comb['drhoerr']
    else:
        if r is None or drho is None or drhoerr is None:
            raise ValueError("Send a combined struct or r,drho,drhoerr")


    plt=FramedPlot()
    plt.aspect_ratio=aspect_ratio
    plt.xlog=True
    plt.ylog=True

    if not nolabel:
        plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
        plt.ylabel = r'$\delta\rho ~ [M_{\odot} pc^{-3}]$'


    od=add_to_log_plot(plt, r, drho, drhoerr, 
                       color=color, 
                       type=type,
                       minval=minval)

    # for drho we need even broader yrange
    plt.xrange = od['xrange']

    yr=od['yrange']
    plt.yrange = [0.5*yr[0], 3*yr[1]]

    if not noshow:
        plt.show()
    od['plt'] = plt
    return od
示例#17
0
def testfit():
    import biggles 
    from biggles import FramedPlot,Points,Curve
    import scipy
    from scipy.optimize import leastsq

    ## Parametric function: 'v' is the parameter vector, 'x' the independent varible
    fp = lambda v, x: v[0]/(x**v[1])*sin(v[2]*x)

    ## Noisy function (used to generate data to fit)
    v_real = [1.5, 0.1, 2.]
    fn = lambda x: fp(v_real, x)

    ## Error function
    e = lambda v, x, y: (fp(v,x)-y)

    ## Generating noisy data to fit
    n = 30
    xmin = 0.1
    xmax = 5
    x = linspace(xmin,xmax,n)
    y = fn(x) + scipy.rand(len(x))*0.2*(fn(x).max()-fn(x).min())

    ## Initial parameter value
    v0 = [3., 1, 4.]

    ## Fitting
    v, success = leastsq(e, v0, args=(x,y), maxfev=10000)

    print('Estimater parameters: ', v)
    print('Real parameters: ', v_real)
    X = linspace(xmin,xmax,n*5)
    plt=FramedPlot()
    plt.add(Points(x,y))
    plt.add(Curve(X,fp(v,X),color='red'))

    plt.show()
示例#18
0
文件: plotting.py 项目: esheldon/espy
def plot_mass(comb=None, r=None, mass=None, masserr=None, 
              color='black',type='filled circle',
              nolabel=False, noshow=False, minval=1.e11,
              aspect_ratio=1):

    if comb is not None:
        r=comb['rmass']
        mass=comb['mass']
        masserr=comb['masserr']
    else:
        if r is None or mass is None or masserr is None:
            raise ValueError("Send a combined struct or r,mass,masserr")


    plt=FramedPlot()
    plt.aspect_ratio=aspect_ratio
    plt.xlog=True
    plt.ylog=True

    if not nolabel:
        plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
        plt.ylabel = r'$M(<r) ~ [h^{-1} M_{\odot}]$'


    od=add_to_log_plot(plt, r, mass, masserr, 
                       color=color, 
                       type=type,
                       minval=minval)

    plt.xrange = od['xrange']
    plt.yrange = od['yrange']

    if not noshow:
        plt.show()
    od['plt'] = plt
    return od
示例#19
0
文件: plotting.py 项目: esheldon/espy
def plot_dsig(**keys):
    """
    This one stands alone. 
    """

    comb=keys.get('comb',None)
    r=keys.get('r',None)
    dsig=keys.get('dsig',None)
    dsigerr=keys.get('dsigerr',None)
    color=keys.get('color','black')
    type=keys.get('type','filled circle')
    nolabel=keys.get('nolabel',False)
    show=keys.get('show',True)
    minval=keys.get('minval',1.e-3)
    xlog=keys.get('xlog',True)
    ylog=keys.get('ylog',True)
    aspect_ratio=keys.get('aspect_ratio',1)
    plt=keys.get('plt',None)

    label=keys.get('label',None)

    if comb is not None:
        r=comb['r']
        dsig=comb['dsig']
        dsigerr=comb['dsigerr']
    else:
        if r is None or dsig is None or dsigerr is None:
            raise ValueError("Send a combined struct or r,dsig,dsigerr")

    if plt is None:
        plt=FramedPlot()
        plt.aspect_ratio=aspect_ratio
        plt.xlog=xlog
        plt.ylog=ylog

        if not nolabel:
            plt.xlabel = labels['rproj']
            plt.ylabel = labels['dsig']

    if ylog:
        od=add_to_log_plot(plt, r, dsig, dsigerr, 
                           color=color, 
                           type=type,
                           minval=minval)
        plt.xrange = od['xrange']
        plt.yrange = od['yrange']

        if label:
            od['p'].label=label
    else:
        zpts=Curve(r, dsig*0)
        plt.add(zpts)

        pts=Points(r, dsig, type=type, color=color)

        if label:
            pts.label=label

        plt.add(pts)
        if dsigerr is not None:
            epts=SymErrY(r, dsig, dsigerr, color=color)
            plt.add(epts)

        yrng=keys.get('yrange',None)
        xrng=keys.get('xrange',None)
        if yrng:
            plt.yrange=yrng
        if xrng:
            plt.xrange=xrng
        else:
            if xlog:
                plt.xrange=eu.plotting.get_log_plot_range(r)



    if show:
        plt.show()

    if ylog:
        od['plt'] = plt
        return od
    else:
        return plt
示例#20
0
文件: plotting.py 项目: esheldon/espy
def plot2dsig_over(r1,dsig1,dsig1err,r2,dsig2, dsig2err, **keys):
    ptype1=keys.get('ptype1','filled circle')
    ptype2=keys.get('ptype2','filled circle')
    size1=keys.get('size1',1)
    size2=keys.get('size2',1)
    color1=keys.get('color1','red')
    color2=keys.get('color2','blue')
    label  = keys.get('label',None)
    label1 = keys.get('label1',None)
    label2 = keys.get('label2',None)
    xrng = keys.get('xrange',None)
    yrng = keys.get('yrange',None)
    show = keys.get('show',True)

    ylog = keys.get('ylog',True)
   
    plt=keys.get('plt',None)

    yall=numpy.concatenate((dsig1, dsig2))
    yerrall=numpy.concatenate((dsig1err, dsig2err))

    if yrng is None:
        if ylog:
            yrng = eu.plotting.get_log_plot_range(yall, err=yerrall, 
                                                  input_range=yrng)

    rr=numpy.concatenate((r1,r2))
    if xrng is None:
        xrng = eu.plotting.get_log_plot_range(rr)

    if plt is None:
        plt=FramedPlot()
    plt.xlog=True
    plt.ylog=ylog
    plt.xrange=xrng
    plt.yrange=yrng
    plt.xlabel = labels['rproj']
    plt.ylabel = labels['dsig']

    dsig1_p = Points(r1, dsig1, color=color1, type=ptype1, size=size1)
    dsig1err_p = SymErrY(r1, dsig1, dsig1err, color=color2)
    dsig1_p.label=label1

    dsig2_p = Points(r2, dsig2, color=color2, type=ptype2, size=size2)
    dsig2err_p = SymErrY(r2, dsig2, dsig2err, color=color2)
    dsig2_p.label=label2

    plt.add(dsig1_p, dsig2_p)

    if ylog:
        # biggles chokes if you give it negative data for a log plot
        eu.plotting.add_log_error_bars(plt,'y',r1,dsig1,dsig1err,yrng,
                                       color=color1)
        eu.plotting.add_log_error_bars(plt,'y',r2,dsig2,dsig2err,yrng,
                                       color=color2)
    else:
        err1 = biggles.SymmetricErrorBarsY(r1,dsig1,dsig1err,color=color1)
        err2 = biggles.SymmetricErrorBarsY(r2,dsig2,dsig2err,color=color2)
        plt.add(err1,err2)

        zerop = biggles.Curve(xrng, [0,0])
        plt.add(zerop)

    if label is not None:
        plt.add(PlotLabel(0.9,0.9,label,halign='right'))

    if label1 is not None or label2 is not None:
        key = PlotKey(0.9,0.15, [dsig1_p,dsig2_p], halign='right')
        plt.add(key)

    if show:
        plt.show()
    return plt
示例#21
0
文件: fit.py 项目: esheldon/espy
def test_fit_nfw_lin_dsig(rmin=0.01):

    from biggles import FramedPlot,Points,SymmetricErrorBarsY,Curve,PlotKey
    omega_m=0.25
    z=0.25


    r200 = 1.0
    c = 5.0
    B=10.0

    rmax = 50.0
    log_rmin = log10(rmin)
    log_rmax = log10(rmax)
    npts = 30
    r = 10.0**linspace(log_rmin,log_rmax,npts)

    fitter = NFWBiasFitter(omega_m,z,r)
    ds = fitter.dsig(r, r200, c, B)
    # 10% errors
    dserr = 0.1*ds
    ds += dserr*numpy.random.standard_normal(ds.size)

    guess = numpy.array([r200,c,B],dtype='f8')
    # add 10% error to the guess
    guess += 0.1*guess*numpy.random.standard_normal(guess.size)

    res = fitter.fit(ds,dserr,guess, more=True)

    r200_fit=res['r200']
    r200_err = res['r200_err']
    c_fit=res['c']
    c_err = res['c_err']
    B_fit=res['B']
    B_err = res['B_err']


    print 'Truth:'
    print '    r200: %f' % r200
    print '       c: %f' % c
    print '       B: %f' % B
    print 'r200_fit: %f +/- %f' % (r200_fit,r200_err)
    print '   c_fit: %f +/- %f' % (c_fit,c_err)
    print '   B_fit: %f +/- %f' % (B_fit,B_err)
    print 'Cov:'
    print res['cov']

 
    rfine = 10.0**linspace(log_rmin,log_rmax,100)
    fitter2 = NFWBiasFitter(omega_m,z,rfine)

    yfit = fitter2.dsig(rfine, r200_fit, c_fit, B_fit)
    yfit_nfw = fitter2.nfw.dsig(rfine, r200_fit, c_fit)
    yfit_lin = fitter2.lin_dsig(rfine,B_fit)

    plt=FramedPlot()
    plt.add(Points(r,ds,type='filled circle'))
    plt.add(SymmetricErrorBarsY(r,ds,dserr))

    cyfit = Curve(rfine,yfit,color='blue')
    cyfit_nfw = Curve(rfine,yfit_nfw,color='red')
    cyfit_lin = Curve(rfine,yfit_lin,color='orange')

    cyfit.label = 'Best Fit'
    cyfit_nfw.label = 'NFW'
    cyfit_lin.label = 'linear'

    key=PlotKey(0.1,0.3,[cyfit,cyfit_nfw,cyfit_lin])
    plt.add(cyfit,cyfit_nfw,cyfit_lin,key)

    plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
    plt.ylabel = r'$\Delta\Sigma ~ [M_{sun} pc^{-2}]$'

    plt.xrange = [0.5*rmin, 1.5*rmax]
    plt.yrange = [0.5*(ds-dserr).min(), 1.5*(ds+dserr).max()]

    plt.xlog=True
    plt.ylog=True
    plt.show()
示例#22
0
文件: lcat.py 项目: esheldon/espy
    def plot_coverage(self, region='both', show=True, dops=True):
        import biggles
        from biggles import FramedPlot, Points, PlotKey


        l = self.read()
        w,=numpy.where( (l['ra'] >= 0.0) & (l['ra'] <= 360.0) )
        if w.size != l.size:
            print("threw out",l.size-w.size,"with bad ra")
            l=l[w]

        llam,leta = eu.coords.eq2sdss(l['ra'],l['dec'])
        maskflags = l['maskflags']

        lammin,lammax = (-70.,70.)

        if region=='ngc':
            # a bit high to make room for the legend
            emin,emax=(-40,60)

            biggles.configure('screen','width', 1800)
            biggles.configure('screen','height', 1140)

        elif region=='sgc':
            emin,emax=(100,165)
            biggles.configure('screen','width', 1800)
            biggles.configure('screen','height', 1140)
        else:
            emin,emax=(-40,165)
            biggles.configure('screen','width', 1140)
            biggles.configure('screen','height', 1140)

        wl=where1((leta > emin) & (leta < emax))
        llam=llam[wl]
        leta=leta[wl]
        maskflags=maskflags[wl]


        plt=FramedPlot()
        plt.xlabel=r'$\lambda$'
        plt.ylabel=r'$\eta$'

        print("adding all lenses")

        type = 'filled circle'
        symsize=0.2

        allp = Points(llam,leta,type=type,size=symsize)
        allp.label='all'
        plt.add(allp)

        wquad = es_sdsspy.stomp_maps.quad_check(maskflags)
        print("adding quad pass")
        quadp = Points(llam[wquad],leta[wquad],type=type,color='red',size=symsize)
        quadp.label = 'quad good'
        plt.add(quadp)

        fakepoints = eu.plotting.fake_filled_circles(['all','quad good'],['black','red'])
        key=PlotKey(0.95,0.95,fakepoints,halign='right')
        plt.add(key)


        es_sdsspy.stomp_maps.plot_boss_geometry(color='blue',plt=plt,show=False)

        xrng = (lammin, lammax)
        yrng = (emin, emax)
        plt.xrange = xrng
        plt.yrange = yrng
        plt.aspect_ratio = (yrng[1]-yrng[0])/float(xrng[1]-xrng[0])


        if show:
            plt.show()

        if dops:
            d = lensing.files.sample_dir(type='lcat',sample=self['sample'])
            d = os.path.join(d,'plots')
            if not os.path.exists(d):
                os.makedirs(d)
            epsfile = os.path.join(d, 'lcat-%s-%s-coverage.eps' % (self['sample'],region) )
            print("Writing to eps file:",epsfile)
            plt.write_eps(epsfile)
        return plt
示例#23
0
文件: lcat.py 项目: esheldon/espy
    def plot_coverage_bybin(self, binner, region='both', 
                            show=True, dops=True, rand=None):
        import pcolors
        import biggles
        import converter
        from biggles import FramedPlot, Points, PlotKey


        orig = self.read_original()
        lcat = self.read()

        all_clam,all_ceta = eu.coords.eq2sdss(orig['ra'],orig['dec'])

        l = orig[lcat['zindex']]
        clam,ceta = eu.coords.eq2sdss(lcat['ra'],lcat['dec'])

        clammin,clammax = (-70.,120.)

        if region=='ngc':
            # a bit high to make room for the legend
            emin,emax=(-40,60)

            biggles.configure('screen','width', 1800)
            biggles.configure('screen','height', 1140)

            clammin,clammax = (-70.,120.)

        elif region=='sgc':
            emin,emax=(105,165)
            biggles.configure('screen','width', 1800)
            biggles.configure('screen','height', 1140)
            clammin,clammax = (-50.,90.)
        else:
            emin,emax=(-40,165)
            biggles.configure('screen','width', 1140)
            biggles.configure('screen','height', 1140)
            clammin,clammax = (-70.,120.)

        wl=where1((all_ceta > emin) & (all_ceta < emax))
        all_clam=all_clam[wl]
        all_ceta=all_ceta[wl]

        wl=where1((ceta > emin) & (ceta < emax))
        clam=clam[wl]
        ceta=ceta[wl]
        l=l[wl]


        plt=FramedPlot()
        plt.xlabel=r'$\lambda$'
        plt.ylabel=r'$\eta$'
        xrng = (clammin, clammax)
        yrng = (emin, emax)
        plt.xrange = xrng
        plt.yrange = yrng


        print("adding all lenses")

        type = 'filled circle'
        symsize=0.2
        colors = pcolors.rainbow(binner['nbin'],'hex')


        if rand is not None:
            clam_r,ceta_r = eu.coords.eq2sdss(rand['ra'],rand['dec'])
            wl=where1((ceta_r > emin) & (ceta_r < emax))
            clam_r=clam_r[wl]
            ceta_r=ceta_r[wl]
            rp = Points(clam_r, ceta_r, type='dot', size=0.2)
            plt.add(rp)
        
        size_min=0.2
        size_max=4

        sizes=[]
        minlambda = l['lambda_zred'].min()
        maxlambda = l['lambda_zred'].max()
        for i in xrange(binner['nbin']):
            w=binner.select_bin(l, i)
            mlam=l['lambda_zred'][w].mean()
            # scale 0 to 1
            sz=(mlam-minlambda)/maxlambda
            # now scale size
            sz = size_min + sz*(size_max-size_min)
            sizes.append(sz)

        all_plots=[]
        labels=[]
        #for i in xrange(binner['nbin']):
        for i in reversed(xrange(binner['nbin'])):
            w=binner.select_bin(l, i)

            #points = Points(clam[w], ceta[w],type=type,size=symsize, color=colors[i])
            points = Points(clam[w], ceta[w],type=type,size=sizes[i], color=colors[i])
            labels.append(binner.bin_label(i))

            plt.add(points)


        labels.reverse()
        fakepoints = eu.plotting.fake_filled_circles(labels, colors)
        key=PlotKey(0.95,0.95,fakepoints,halign='right',size=1.5)
        plt.add(key)

        plt.aspect_ratio = (yrng[1]-yrng[0])/float(xrng[1]-xrng[0])

        es_sdsspy.stomp_maps.plot_boss_geometry(color='blue',plt=plt,show=False)

        if show:
            plt.show()

        if dops:
            d = lensing.files.sample_dir(type='lcat',sample=self['sample'])
            d = os.path.join(d,'plots')
            if not os.path.exists(d):
                os.makedirs(d)
            epsfile = os.path.join(d, 'lcat-%s-coverage-bybin.eps' % self['sample'])
            if rand is not None:
                epsfile=epsfile.replace('.eps','-withrand.eps')
            if region in ['sgc','ngc']:
                epsfile=epsfile.replace('.eps','-%s.eps' % region)

            print("Writing to eps file:",epsfile)
            plt.write_eps(epsfile)
            print("converting to png")
            converter.convert(epsfile, dpi=300)
        return plt
示例#24
0
    def compare_same_same(self, type, show=True):
        """
        Use the id from the validation set to go back and get the
        z for those objects.  Then plot histograms for comparision.

        read in all file
        read in validation set
            take recoverable subset based on num file
        Get z info for these points from the all file

        plot the histgram of actual validation set redshifts
        overplot the histgram of weighted redshifts

        Then bin by true validation set redshift and plot the
            ztrue - <z>
        Where <z> is the expectation value of z based on the p(z)
            <z> = integral( z*p(z) )/integral( p(z) )
        That will be noisy
        """
        
        fdict=self.same_same_fdict(type)

        # this is the original file
        all = zphot.weighting.read_training(fdict['origfile'])

        # this is the validation set, for which the "photoid" field
        # is actually an id pointing back into "all"
        # we take version 1 and will demand num > 0
        valid = zphot.weighting.read_photo(fdict['photofile'])
        num = zphot.weighting.read_num(fdict['numfile1'])


        # this is the weights file
        weights = zphot.weighting.read_training(fdict['wfile2'])

        # recoverable set
        w_recoverable = where1(num['num'] > 0)
        # this is actually the indexes back into the "all" file
        w_keep = num['photoid'][w_recoverable]

        # get the z values for these validation objects
        zvalid = all['z'][w_keep]

        binsize=0.0314
        valid_dict = histogram(zvalid, min=0, max=1.1, binsize=binsize, more=True)
        plt=FramedPlot()

        vhist = valid_dict['hist']/(float(valid_dict['hist'].sum()))
        pvhist=biggles.Histogram(vhist, x0=valid_dict['low'][0], binsize=binsize)
        pvhist.label = 'validation'

        weights_dict = histogram(weights['z'], min=0, max=1.1, binsize=binsize,
                                 weights=weights['weight'], more=True)
        whist = weights_dict['whist']/weights_dict['whist'].sum()
        pwhist=biggles.Histogram(whist, x0=weights_dict['low'][0], 
                                 binsize=binsize, color='red')
        pwhist.label = 'weighted train'

        key = PlotKey(0.6,0.6,[pvhist,pwhist])
        plt.add(pvhist,pwhist,key)

        plt.add( biggles.PlotLabel(.8, .9, type) )

        plt.write_eps(fdict['zhistfile'])
        converter.convert(fdict['zhistfile'],dpi=90,verbose=True)
        if show:
            plt.show()
示例#25
0
    def plot_vs_field(self, field, plot_type, 
                      rmag_min=None, 
                      rmag_max=None, 
                      fmin=None, fmax=None, 
                      nbin=20, nperbin=50000,
                      xrng=None, yrng=None, show=True):

        
        allowed=['meane','residual']
        if plot_type not in allowed:
            raise ValueError("plot_type should be in [%s]" % ','.join(allowed))
        if plot_type == 'residual' and self.sweeptype != 'star':
            raise ValueError("residuals only supported for stars")

        if rmag_min is None:
            if self.sweeptype == 'gal':
                rmag_min=18.0
            else:
                rmag_min=15.0

        if rmag_max is None:
            if self.sweeptype == 'gal':
                rmag_max=21.8
            else:
                rmag_max=19.0

        # this will only load the main data once.
        self.load_data(field)

        print("Using rmag range: [%0.2f,%0.2f]" % (rmag_min,rmag_max))
        # notes 
        #  - amflags here is really corrflags_rg for gals
        #  - e1 is really e1_rg for gals
        logic = ((self['amflags'] == 0)
                 & (self['e1'] < 4)
                 & (self['e1'] > -4)
                 & (self['rmag'] > rmag_min)
                 & (self['rmag'] < rmag_max) )
        
        if self.sweeptype == 'gal':
            logic = logic & (self['R'] > 1.0/3.0) & (self['R'] < 1.0)

        w=where1(logic)
        print("Number passing cuts:",w.size)
        minnum=31000
        if w.size < minnum:
            print("want %d good objects, found %d" % (minnum,w.size))
            return

        weights = 1.0/(0.32**2 + self['uncer'][w]**2)

        # we can try to get nice labels for some fields
        if field == 'fwhm_psf':
            field_data = self['fwhm_psf'][w]
            fstr = 'PSF FWHM (arcsec)'
        elif field == 'sigma_psf':
            field_data = self['sigma_psf'][w]
            fstr = r'\sigma_{PSF}'
        elif field == 'sigma':
            field_data = self['sigma'][w]
            fstr = r'\sigma_{obj+PSF}'
        else:
            field_data = self[field][w]
            fstr=field
            fstr = fstr.replace('_','\_')

        print("Plotting for field:",field)

        if plot_type == 'residual':
            print('  doing: residual')
            be1 = eu.stat.Binner(field_data, self['e1'][w]-self['e1_psf'][w], 
                                 weights=weights)
            be2 = eu.stat.Binner(field_data, self['e2'][w]-self['e2_psf'][w], 
                                 weights=weights)
            ylabel = r'$<e_{star}-e_{PSF}>$'
        else:
            print('  doing meane')
            be1 = eu.stat.Binner(field_data, self['e1'][w], weights=weights)
            be2 = eu.stat.Binner(field_data, self['e2'][w], weights=weights)
            ylabel = r'$<e>$'


        # regular hist for display
        print("  regular fixed binsize hist")
        xm,xe,xstd=eu.stat.wmom(field_data, weights, sdev=True)
        #hxmin = xm-4.0*xstd
        #hxmax = xm+4.0*xstd
        bsize = xstd/5.
        hist = eu.stat.histogram(field_data, binsize=bsize, 
                                 weights=weights, more=True)


        print("  hist  e1, nperbin: ",nperbin)
        be1.dohist(nperbin=nperbin, min=fmin, max=fmax)
        #be1.dohist(nbin=nbin, min=fmin, max=fmax)
        print("  stats e1")
        be1.calc_stats()
        print("  hist  e2, nperbin: ",nperbin)
        be2.dohist(nperbin=nperbin, min=fmin, max=fmax)
        #be2.dohist(nbin=nbin, min=fmin, max=fmax)
        print("  stats e2")
        be2.calc_stats()



        plt = FramedPlot()

        if xrng is not None:
            plt.xrange=xrng
        else:
            if field == 'R':
                plt.xrange=[0.29,1.01]

        if yrng is not None:
            plt.yrange=yrng
            ymin = yrng[0]
            ymax = 0.8*yrng[1]
        else:
            ymin = min( be1['wymean'].min(),be2['wymean'].min() )
            ymax = 0.8*max( be1['wymean'].max(),be2['wymean'].max() )

        # this is a histogram-like object
        ph = eu.plotting.make_hist_curve(hist['low'], hist['high'], hist['whist'], 
                                         ymin=ymin, ymax=ymax, color='grey50')
        plt.add(ph)

        p1 = Points( be1['wxmean'], be1['wymean'], 
                    type='filled circle', color='blue')
        p1err = SymErrY( be1['wxmean'], be1['wymean'], be1['wyerr2'], color='blue')
        p1.label = r'$e_1$'

        p2 = Points( be2['wxmean'], be2['wymean'], 
                    type='filled circle', color='red')
        p2.label = r'$e_2$'
        p2err = SymErrY( be2['wxmean'], be2['wymean'], be2['wyerr2'], color='red')

        key = PlotKey(0.1,0.9, [p1,p2])
        plt.add(p1, p1err, p2, p2err, key)

        if self.camcol != 'any' and field == 'R' and plot_type=='meane':
            order=3
            print("  getting poly order",order)
            coeff1 = numpy.polyfit(be1['wxmean'], be1['wymean'], order)
            poly1=numpy.poly1d(coeff1)
            coeff2 = numpy.polyfit(be2['wxmean'], be2['wymean'], order)
            poly2=numpy.poly1d(coeff2)

            ps1 = Curve( be1['wxmean'], poly1(be1['wxmean']), color='blue')
            ps2 = Curve( be2['wxmean'], poly2(be2['wxmean']), color='red')
            plt.add(ps1,ps2)

            polyf = self.R_polyfile(self.camcol, rmag_max)
            out={'coeff_e1':list([float(c) for c in coeff1]),
                 'coeff_e2':list([float(c) for c in coeff2])}
            print("    -- Writing poly coeffs to:",polyf)
            eu.io.write(polyf,out)
        if field != 'rmag':
            rmag_lab = \
                PlotLabel(0.1,0.05,'%0.2f < rmag < %0.2f' % (rmag_min,rmag_max), 
                          halign='left')
            plt.add(rmag_lab)

        procrun_lab = PlotLabel(0.1,0.1,
                            'procrun: %s filter: %s' % (self.procrun, self.band), 
                            halign='left')
        plt.add(procrun_lab)
        cy=0.9
        if self.run != 'any':
            run_lab = PlotLabel(0.9,0.9, 'run: %06i' % self.run, halign='right')
            plt.add(run_lab)
            cy=0.8
        if self.camcol != 'any':
            run_lab = PlotLabel(0.9,cy, 'camcol: %i' % self.camcol, halign='right')
            plt.add(run_lab)



        plt.xlabel = r'$'+fstr+'$'
        plt.ylabel = ylabel


        if show:
            plt.show()
        epsfile = self.plotfile(field, rmag_max, plot_type=plot_type)
        eu.ostools.makedirs_fromfile(epsfile, verbose=True)
        print("  Writing eps file:",epsfile)
        plt.write_eps(epsfile)

        converter.convert(epsfile, verbose=True)
示例#26
0
文件: binning.py 项目: esheldon/espy
def define_bins(var_input, lastmin, alpha=0.6666, visible=False, prompt=False):
    """

    define bins assuming the data look similar to a schechter function.  The
    trick is dealing with the exponential cutoff: pick a "lastmin" such that
    defines the lower edge of the last bin.  For lower values we assume a power
    law, working downward keeping N*var^alpha = constant

    parameters
    ----------
    var: array
        sample data with wich to define bins
    lastmin: float
        lower edge of last bin
    alpha: float, optional
        Assumed power law at the lower end of distribution. Default 0.6666
    visible: bool, optional
        make a plot if True
    prompt: bool, optional
        prompt the user if set True
    """
    
    from biggles import FramedPlot, Curve, Point, PlotLabel
    var = var_input.copy()
    var.sort()

    # reverse sort, biggest to smallest
    var = numpy.fromiter(reversed(var), dtype='f8')

    ind = numpy.arange(var.size,dtype='i8')

    w_last, = where(var > lastmin)
    mvar_last = var[w_last].sum()/w_last.size

    print("wlast.size:",w_last.size,"mvar_last:",mvar_last)

    cref = 0.5*log10(w_last.size) + alpha*log10(mvar_last)

    # now look at mean var*N for rest by using cumulative
    # sums


    var = var[w_last[-1]:]
    var_last = lastmin
    binnum=0

    minbin=[]
    maxbin=[]
    while 1:
        nd = 1+numpy.arange(var.size)

        mvar = var.cumsum()/nd
        cval = 0.5*log10(nd) + alpha*log10(mvar)

        wthis, = where(cval < cref)

        var_min = var[wthis[-1]]
        var_max = var_last

        minbin.append(var_min)
        maxbin.append(var_max)
        if visible:
            print("numleft:",var.size,"wthis.size",wthis.size)

            plt=FramedPlot()
            curve = Curve(var, cval)
            plt.add(curve)

            oc = Curve([var.min(), var.max()],[cref,cref],color='blue')
            plt.add(oc)

            p = Point(var[wthis[-1]], cval[wthis[-1]], color='orange', type='filled circle')
            plt.add(p)

            binnum -= 1
            blab=PlotLabel(0.9,0.9,'bin %d' % binnum, halign='right')

            rlab=PlotLabel(0.9,0.85,r'%0.2f $ < var < $ %0.2f' % (var_min,var_max), halign='right')
            nlab=PlotLabel(0.9,0.80,'N: %d' % wthis.size, halign='right')

            plt.add(blab)
            plt.add(rlab)
            plt.add(nlab)
            plt.show()

            if prompt:
                key=raw_input('hit a key: ')
                if key == 'q':
                    return
        var_last = var_min
        var=var[wthis[-1]+1:]


        if len(var) == 0:
            break
    
    minbin = list(reversed(minbin))
    maxbin = list(reversed(maxbin))
    minbin.append(maxbin[-1])
    maxbin.append(var_input.max())
    
    minstr=[]
    maxstr=[]
    for i in xrange(len(minbin)):
        if minbin[i] is not None:
            minstr.append('%0.1f' % minbin[i])
        else:
            minstr.append('None')
        if maxbin[i] is not None:
            maxstr.append('%0.1f' % maxbin[i])
        else:
            maxstr.append('None')

    minstr = '[' + ', '.join(minstr) +']'
    maxstr = '[' + ', '.join(maxstr) +']'

    #for i in xrange(len(minbin)):
    #    print('%i %0.1f %0.1f' % (i+1,minbin[i],maxbin[i]))

    print("nbin:",len(minbin))
    print(minstr)
    print(maxstr)
示例#27
0
文件: fit.py 项目: esheldon/espy
def plot_nfw_lin_fits_byrun(run, name, npts=100, prompt=False, 
                            withlin=True,
                            ymin=0.01, ymax=2000.0):
    """

    This should be made not specific for the m-z splits we
    used on the sims

    """
    conf = lensing.files.cascade_config(run)
    if withlin:
        ex='lin'
        nex='lin'
    else:
        nex=''
        ex=''
    d = lensing.sample_read(type='fit',sample=run, name=name, extra=ex)

    omega_m = conf['cosmo_config']['omega_m']

    rravel = d['r'].ravel()
    xrange = [0.5*rravel.min(), 1.5*rravel.max()]

    #for i in xrange(d.size):
    i=0
    for dd in d:

        zrange = dd['z_range']
        mrange = dd['m200_range']

        if dd['rrange'][0] > 0:
            log_rmin = log10(dd['rrange'][0])
            log_rmax = log10(dd['rrange'][1])
        else:
            log_rmin = log10(dd['r'][0])
            log_rmax = log10(dd['r'][-1])
        rvals = 10.0**linspace(log_rmin,log_rmax,npts)

        plt = FramedPlot()  
        lensing.plotting.add_to_log_plot(plt, dd['r'],dd['dsig'],dd['dsigerr'])

        z = dd['z_mean']
        fitter = lensing.fit.NFWBiasFitter(omega_m,z,rvals,withlin=withlin)

        if withlin:
            yfit = fitter.nfw_lin_dsig(rvals, dd['r200_fit'],dd['c_fit'],dd['B_fit'])
            yfit_nfw = fitter.nfw.dsig(rvals,dd['r200_fit'],dd['c_fit'])
            yfit_lin = fitter.lin_dsig(rvals,dd['B_fit'])

            yfit = where(yfit < 1.e-5, 1.e-5, yfit)
            yfit_lin = where(yfit_lin < 1.e-5, 1.e-5, yfit_lin)

            cyfit = Curve(rvals,yfit,color='blue')
            cyfit_nfw = Curve(rvals,yfit_nfw,color='red')
            cyfit_lin = Curve(rvals,yfit_lin,color='orange')

            cyfit.label = 'Best Fit'
            cyfit_nfw.label = 'NFW'
            cyfit_lin.label = 'linear'

            key=PlotKey(0.1,0.3,[cyfit,cyfit_nfw,cyfit_lin])
            plt.add(cyfit,cyfit_nfw,cyfit_lin,key)
        else:
            yfit_nfw = fitter.nfw.dsig(rvals,dd['r200_fit'],dd['c_fit'])
            cyfit_nfw = Curve(rvals,yfit_nfw,color='blue')
            plt.add(cyfit_nfw)

        zlab='%0.2f < z < %0.2f' % (zrange[0],zrange[1])
        plt.add(PlotLabel(0.7,0.8,zlab))
        ll = (log10(mrange[0]),log10(mrange[1]))
        mlab = r'$%0.2f < logM_{200} < %0.2f$' % ll
        plt.add(PlotLabel(0.7,0.9,mlab))

        #yrange = [ymin,(dd['dsig']+dd['dsigerr']).max()*1.5]
        yrange = [ymin,ymax]
        plt.xrange = xrange
        plt.yrange = yrange
        plt.xlog=True
        plt.ylog=True
        plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
        plt.ylabel = r'$\Delta\Sigma ~ [M_{sun} pc^{-2}]$'
        plt.aspect_ratio=1
        if prompt:
            plt.show()
            rinput = raw_input('hit a key: ')
            if rinput == 'q':
                return
        else:
            d = lensing.files.lensbin_plot_dir(run,name)
            if not os.path.exists(d):
                os.makedirs(d)
            epsfile=path_join(d,'desmocks-nfw%s-fit-%02i.eps' % (nex,i))
            print 'Writing epsfile:',epsfile
            plt.write_eps(epsfile)
        i += 1
示例#28
0
    def plot_ellip_vs_field(self, field, rmag_max=21.8, fmin=None, fmax=None, nbin=20, nperbin=50000,
                            yrange=None, show=True):
        self.load_data()

        w=where1((self['cmodelmag_dered_r'] > 18.0) & (self['cmodelmag_dered_r'] < rmag_max) )

        if w.size == 0:
            print("no good objects")
            return

        weights = 1.0/(0.32**2 + self['uncer_rg'][w]**2)

        if field == 'psf_fwhm':
            field_data = self['psf_fwhm'][w]
            fstr = 'PSF FWHM (arcsec)'
        elif field == 'psf_sigma':
            field_data = self['psf_sigma'][w]
            fstr = r'$\sigma_{PSF}$'
        elif field == 'R_rg':
            field_data = self['r_rg'][w]
            fstr = 'R_rg'
        else:
            field_data = self[field][w]
            fstr=field

        print("Plotting mean e for field:",field)

        fstr = fstr.replace('_','\_')

        be1 = eu.stat.Binner(field_data, self['e1_rg'][w], weights=weights)
        be2 = eu.stat.Binner(field_data, self['e2_rg'][w], weights=weights)

        print("  hist  e1")
        be1.dohist(nperbin=nperbin, min=fmin, max=fmax)
        #be1.dohist(nbin=nbin, min=fmin, max=fmax)
        print("  stats e1")
        be1.calc_stats()
        print("  hist  e2")
        be2.dohist(nperbin=nperbin, min=fmin, max=fmax)
        #be2.dohist(nbin=nbin, min=fmin, max=fmax)
        print("  stats e2")
        be2.calc_stats()

        plt = FramedPlot()
        p1 = Points( be1['wxmean'], be1['wymean'], type='filled circle', color='blue')
        p1err = SymErrY( be1['wxmean'], be1['wymean'], be1['wyerr2'], color='blue')
        p1.label = r'$e_1$'

        p2 = Points( be2['wxmean'], be2['wymean'], type='filled circle', color='red')
        p2.label = r'$e_2$'
        p2err = SymErrY( be2['wxmean'], be2['wymean'], be2['wyerr2'], color='red')

        key = PlotKey(0.8, 0.9, [p1,p2])
        plt.add(p1, p1err, p2, p2err, key)

        if field != 'cmodelmag_dered_r':
            rmag_lab = PlotLabel(0.1,0.05,'rmag < %0.2f' % rmag_max, halign='left')
            plt.add(rmag_lab)

        plab = PlotLabel(0.1,0.1, 'CH+RM', halign='left')
        plt.add(plab)

        plt.xlabel = r'$'+fstr+'$'
        plt.ylabel = r'$<e>$'

        if yrange is not None:
            plt.yrange=yrange

        if show:
            plt.show()
        epsfile = self.plotfile(field, rmag_max)
        print("  Writing eps file:",epsfile)
        plt.write_eps(epsfile)
示例#29
0
文件: lcat.py 项目: esheldon/espy
    def plot_coverage(self, region='both', show=True, dops=True):
        """

        Plot a random subset of the randoms along with the
        boss survey geometry area as bounding boxes

        """
        import biggles
        from biggles import FramedPlot, Points, PlotKey

        symsize=0.5

        l = self.read()
        llam,leta = eu.coords.eq2sdss(l['ra'],l['dec'])

        lammin,lammax = (-70.,70.)

        if region=='ngc':
            # a bit high to make room for the legend
            emin,emax=(-40,60)

            biggles.configure('screen','width', 1800)
            biggles.configure('screen','height', 1140)
            width=1.5

        elif region=='sgc':
            emin,emax=(125,165)
            biggles.configure('screen','width', 1800)
            biggles.configure('screen','height', 1140)
            width=2
        else:
            emin,emax=(-40,165)
            biggles.configure('screen','width', 1140)
            biggles.configure('screen','height', 1140)
            width=2

        wl=where1((leta > emin) & (leta < emax))
        llam=llam[wl]
        leta=leta[wl]


        plt=FramedPlot()
        plt.xlabel=r'$\lambda$'
        plt.ylabel=r'$\eta$'
        xrng = (lammin, lammax)
        yrng = (emin, emax)
        plt.xrange = xrng
        plt.yrange = yrng


        print("adding random subset of randoms")

        ii = eu.numpy_util.random_subset(llam.size, 500000)
        allp = Points(llam[ii],leta[ii],type='dot',size=symsize)
        plt.add(allp)

        plt.aspect_ratio = (yrng[1]-yrng[0])/float(xrng[1]-xrng[0])

        #es_sdsspy.stomp_maps.plot_boss_geometry(color='blue',plt=plt,show=False)
        es_sdsspy.stomp_maps.plot_boss_geometry(plt=plt,show=False,width=width)

        if show:
            plt.show()

        if dops:
            d = lensing.files.sample_dir(type='lcat',sample=self['sample'])
            d = os.path.join(d,'plots')
            if not os.path.exists(d):
                os.makedirs(d)
            epsfile = os.path.join(d, '%s-%s-coverage.eps' % ('lcat',self['sample']))
            print("Writing to eps file:",epsfile)
            plt.write_eps(epsfile)
        return plt