def compute_output(api, args): """ Creates one or more models using the `training_set` or uses the ids of previously created BigML models to make predictions for the `test_set`. """ source = None dataset = None model = None models = None fields = None other_label = OTHER ensemble_ids = [] multi_label_data = None multi_label_fields = [] # local_ensemble = None test_dataset = None datasets = None # variables from command-line options resume = args.resume_ model_ids = args.model_ids_ output = args.predictions dataset_fields = args.dataset_fields_ check_args_coherence(args) path = u.check_dir(output) session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG) csv_properties = {} # If logging is required set the file for logging log = None if args.log_file: u.check_dir(args.log_file) log = args.log_file # If --clear_logs the log files are cleared clear_log_files([log]) # labels to be used in multi-label expansion labels = None if args.labels is None else [label.strip() for label in args.labels.split(args.args_separator)] if labels is not None: labels = sorted([label for label in labels]) # multi_label file must be preprocessed to obtain a new extended file if args.multi_label and args.training_set is not None: (args.training_set, multi_label_data) = ps.multi_label_expansion( args.training_set, args.train_header, args, path, labels=labels, session_file=session_file ) args.train_header = True args.objective_field = multi_label_data["objective_name"] all_labels = l.get_all_labels(multi_label_data) if not labels: labels = all_labels else: all_labels = labels if args.objective_field: csv_properties.update({"objective_field": args.objective_field}) if args.source_file: # source is retrieved from the contents of the given local JSON file source, csv_properties, fields = u.read_local_resource(args.source_file, csv_properties=csv_properties) else: # source is retrieved from the remote object source, resume, csv_properties, fields = ps.source_processing( api, args, resume, csv_properties=csv_properties, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log, ) if args.multi_label and source: multi_label_data = l.get_multi_label_data(source) (args.objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync( args.objective_field, labels, multi_label_data, fields, multi_label_fields ) if args.dataset_file: # dataset is retrieved from the contents of the given local JSON file model_dataset, csv_properties, fields = u.read_local_resource(args.dataset_file, csv_properties=csv_properties) if not args.datasets: datasets = [model_dataset] dataset = model_dataset else: datasets = u.read_datasets(args.datasets) if not datasets: # dataset is retrieved from the remote object datasets, resume, csv_properties, fields = pd.dataset_processing( source, api, args, resume, fields=fields, csv_properties=csv_properties, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log, ) if datasets: dataset = datasets[0] if args.to_csv is not None: resume = pd.export_dataset(dataset, api, args, resume, session_file=session_file, path=path) # Now we have a dataset, let's check if there's an objective_field # given by the user and update it in the fields structure args.objective_id_ = get_objective_id(args, fields) # If test_split is used, split the dataset in a training and a test dataset # according to the given split if args.test_split > 0: dataset, test_dataset, resume = pd.split_processing( dataset, api, args, resume, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log ) datasets[0] = dataset # Check if the dataset has a categorical objective field and it # has a max_categories limit for categories if args.max_categories > 0 and len(datasets) == 1: if pd.check_max_categories(fields.fields[args.objective_id_]): distribution = pd.get_categories_distribution(dataset, args.objective_id_) if distribution and len(distribution) > args.max_categories: categories = [element[0] for element in distribution] other_label = pd.create_other_label(categories, other_label) datasets, resume = pd.create_categories_datasets( dataset, distribution, fields, args, api, resume, session_file=session_file, path=path, log=log, other_label=other_label, ) else: sys.exit( "The provided objective field is not categorical nor " "a full terms only text field. " "Only these fields can be used with" " --max-categories" ) # If multi-dataset flag is on, generate a new dataset from the given # list of datasets if args.multi_dataset: dataset, resume = pd.create_new_dataset( datasets, api, args, resume, fields=fields, session_file=session_file, path=path, log=log ) datasets = [dataset] # Check if the dataset has a generators file associated with it, and # generate a new dataset with the specified field structure. Also # if the --to-dataset flag is used to clone or sample the original dataset if ( args.new_fields or (args.sample_rate != 1 and args.no_model) or (args.lisp_filter or args.json_filter) and not has_source(args) ): if fields is None: if isinstance(dataset, basestring): dataset = check_resource(dataset, api=api) fields = Fields(dataset, csv_properties) args.objective_id_ = get_objective_id(args, fields) args.objective_name_ = fields.field_name(args.objective_id_) dataset, resume = pd.create_new_dataset( dataset, api, args, resume, fields=fields, session_file=session_file, path=path, log=log ) datasets[0] = dataset # rebuild fields structure for new ids and fields csv_properties.update({"objective_field": args.objective_name_, "objective_field_present": True}) fields = pd.get_fields_structure(dataset, csv_properties) args.objective_id_ = get_objective_id(args, fields) if args.multi_label and dataset and multi_label_data is None: multi_label_data = l.get_multi_label_data(dataset) (args.objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync( args.objective_field, labels, multi_label_data, fields, multi_label_fields ) if dataset: # retrieves max_categories data, if any args.max_categories = get_metadata(dataset, "max_categories", args.max_categories) other_label = get_metadata(dataset, "other_label", other_label) if args.model_file: # model is retrieved from the contents of the given local JSON file model, csv_properties, fields = u.read_local_resource(args.model_file, csv_properties=csv_properties) models = [model] model_ids = [model["resource"]] ensemble_ids = [] elif args.ensemble_file: # model is retrieved from the contents of the given local JSON file ensemble, csv_properties, fields = u.read_local_resource(args.ensemble_file, csv_properties=csv_properties) model_ids = ensemble["object"]["models"][:] ensemble_ids = [ensemble["resource"]] models = model_ids[:] model = retrieve_resource(bigml.api.BigML(storage="./storage"), models[0], query_string=r.ALL_FIELDS_QS) models[0] = model else: # model is retrieved from the remote object models, model_ids, ensemble_ids, resume = pm.models_processing( datasets, models, model_ids, api, args, resume, fields=fields, session_file=session_file, path=path, log=log, labels=labels, multi_label_data=multi_label_data, other_label=other_label, ) if models: model = models[0] single_model = len(models) == 1 # If multi-label flag is set and no training_set was provided, label # info is extracted from the user_metadata. If models belong to an # ensemble, the ensemble must be retrieved to get the user_metadata. if model and args.multi_label and multi_label_data is None: if len(ensemble_ids) > 0 and isinstance(ensemble_ids[0], dict): resource = ensemble_ids[0] elif belongs_to_ensemble(model): ensemble_id = get_ensemble_id(model) resource = r.get_ensemble(ensemble_id, api=api, verbosity=args.verbosity, session_file=session_file) else: resource = model multi_label_data = l.get_multi_label_data(resource) # We update the model's public state if needed if model: if isinstance(model, basestring) or bigml.api.get_status(model)["code"] != bigml.api.FINISHED: if not args.evaluate and not a.has_train(args): query_string = MINIMUM_MODEL elif not args.test_header: query_string = r.ALL_FIELDS_QS else: query_string = "%s;%s" % (r.ALL_FIELDS_QS, r.FIELDS_QS) model = u.check_resource(model, api.get_model, query_string=query_string) models[0] = model if args.black_box or args.white_box or (args.shared_flag and r.shared_changed(args.shared, model)): model_args = {} if args.shared_flag and r.shared_changed(args.shared, model): model_args.update(shared=args.shared) if args.black_box or args.white_box: model_args.update(r.set_publish_model_args(args)) if model_args: model = r.update_model(model, model_args, args, api=api, path=path, session_file=session_file) models[0] = model # We get the fields of the model if we haven't got # them yet and need them if model and not args.evaluate and args.test_set: # If more than one model, use the full field structure if not single_model and not args.multi_label and belongs_to_ensemble(model): if len(ensemble_ids) > 0: ensemble_id = ensemble_ids[0] else: ensemble_id = get_ensemble_id(model) fields = pm.get_model_fields( model, csv_properties, args, single_model=single_model, multi_label_data=multi_label_data ) # Free memory after getting fields # local_ensemble = None gc.collect() # Fills in all_labels from user_metadata if args.multi_label and not all_labels: (args.objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync( args.objective_field, labels, multi_label_data, fields, multi_label_fields ) if model: # retrieves max_categories data, if any args.max_categories = get_metadata(model, "max_categories", args.max_categories) other_label = get_metadata(model, "other_label", other_label) # If predicting if models and (a.has_test(args) or (test_dataset and args.remote)) and not args.evaluate: models_per_label = 1 if test_dataset is None: test_dataset = get_test_dataset(args) if args.multi_label: # When prediction starts from existing models, the # multi_label_fields can be retrieved from the user_metadata # in the models if args.multi_label_fields is None and multi_label_fields: multi_label_field_names = [field[1] for field in multi_label_fields] args.multi_label_fields = ",".join(multi_label_field_names) test_set = ps.multi_label_expansion( args.test_set, args.test_header, args, path, labels=labels, session_file=session_file, input_flag=True )[0] test_set_header = True # Remote predictions: predictions are computed as batch predictions # in bigml.com except when --no-batch flag is set on or multi-label # or max-categories are used if ( args.remote and not args.no_batch and not args.multi_label and not args.method in [THRESHOLD_CODE, COMBINATION] ): # create test source from file test_name = "%s - test" % args.name if args.test_source is None: test_properties = ps.test_source_processing( api, args, resume, session_file=session_file, path=path, log=log ) (test_source, resume, csv_properties, test_fields) = test_properties else: test_source_id = bigml.api.get_source_id(args.test_source) test_source = api.check_resource(test_source_id) if test_dataset is None: # create test dataset from test source dataset_args = r.set_basic_dataset_args(args, name=test_name) test_dataset, resume = pd.alternative_dataset_processing( test_source, "test", dataset_args, api, args, resume, session_file=session_file, path=path, log=log ) else: test_dataset_id = bigml.api.get_dataset_id(test_dataset) test_dataset = api.check_resource(test_dataset_id) csv_properties.update(objective_field=None, objective_field_present=False) test_fields = pd.get_fields_structure(test_dataset, csv_properties) batch_prediction_args = r.set_batch_prediction_args(args, fields=fields, dataset_fields=test_fields) remote_predict( model, test_dataset, batch_prediction_args, args, api, resume, prediction_file=output, session_file=session_file, path=path, log=log, ) else: models_per_label = args.number_of_models if args.multi_label and len(ensemble_ids) > 0 and args.number_of_models == 1: # use case where ensembles are read from a file models_per_label = len(models) / len(ensemble_ids) predict( models, fields, args, api=api, log=log, resume=resume, session_file=session_file, labels=labels, models_per_label=models_per_label, other_label=other_label, multi_label_data=multi_label_data, ) # When combine_votes flag is used, retrieve the predictions files saved # in the comma separated list of directories and combine them if args.votes_files_: model_id = re.sub(r".*(model_[a-f0-9]{24})__predictions\.csv$", r"\1", args.votes_files_[0]).replace("_", "/") try: model = u.check_resource(model_id, api.get_model) except ValueError, exception: sys.exit("Failed to get model %s: %s" % (model_id, str(exception))) local_model = Model(model) message = u.dated("Combining votes.\n") u.log_message(message, log_file=session_file, console=args.verbosity) combine_votes(args.votes_files_, local_model.to_prediction, output, method=args.method)
def compute_output(api, args, training_set, test_set=None, output=None, objective_field=None, description=None, field_attributes=None, types=None, dataset_fields=None, model_fields=None, name=None, training_set_header=True, test_set_header=True, model_ids=None, votes_files=None, resume=False, fields_map=None, test_field_attributes=None, test_types=None): """ Creates one or more models using the `training_set` or uses the ids of previously created BigML models to make predictions for the `test_set`. """ source = None dataset = None model = None models = None fields = None other_label = OTHER ensemble_ids = [] multi_label_data = None multi_label_fields = [] local_ensemble = None # It is compulsory to have a description to publish either datasets or # models if (not description and (args.black_box or args.white_box or args.public_dataset)): sys.exit("You should provide a description to publish.") # When using --max-categories, it is compulsory to specify also the # objective_field if args.max_categories > 0 and objective_field is None: sys.exit("When --max-categories is used, you must also provide the" " --objective field name or column number") # When using --new-fields, it is compulsory to specify also a dataset # id if args.new_fields and not args.dataset: sys.exit("To use --new-fields you must also provide a dataset id" " to generate the new dataset from it.") path = u.check_dir(output) session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG) csv_properties = {} # If logging is required set the file for logging log = None if args.log_file: u.check_dir(args.log_file) log = args.log_file # If --clear_logs the log files are cleared clear_log_files([log]) # labels to be used in multi-label expansion labels = (map(str.strip, args.labels.split(',')) if args.labels is not None else None) if labels is not None: labels = sorted([label.decode("utf-8") for label in labels]) # multi_label file must be preprocessed to obtain a new extended file if args.multi_label and training_set is not None: (training_set, multi_label_data) = ps.multi_label_expansion( training_set, training_set_header, objective_field, args, path, labels=labels, session_file=session_file) training_set_header = True objective_field = multi_label_data["objective_name"] all_labels = l.get_all_labels(multi_label_data) if not labels: labels = all_labels else: all_labels = labels source, resume, csv_properties, fields = ps.source_processing( training_set, test_set, training_set_header, test_set_header, api, args, resume, name=name, description=description, csv_properties=csv_properties, field_attributes=field_attributes, types=types, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log) if args.multi_label and source: multi_label_data = l.get_multi_label_data(source) (objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync( objective_field, labels, multi_label_data, fields, multi_label_fields) datasets, resume, csv_properties, fields = pd.dataset_processing( source, training_set, test_set, fields, objective_field, api, args, resume, name=name, description=description, dataset_fields=dataset_fields, multi_label_data=multi_label_data, csv_properties=csv_properties, session_file=session_file, path=path, log=log) if datasets: dataset = datasets[0] # If test_split is used, split the dataset in a training and a test dataset # according to the given split if args.test_split > 0: dataset, test_dataset, resume = pd.split_processing( dataset, api, args, resume, name=name, description=description, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log) datasets[0] = dataset # Check if the dataset has a categorical objective field and it # has a max_categories limit for categories if args.max_categories > 0 and len(datasets) == 1: objective_id = fields.field_id(fields.objective_field) if pd.check_max_categories(fields.fields[objective_id]): distribution = pd.get_categories_distribution(dataset, objective_id) if distribution and len(distribution) > args.max_categories: categories = [element[0] for element in distribution] other_label = pd.create_other_label(categories, other_label) datasets, resume = pd.create_categories_datasets( dataset, distribution, fields, args, api, resume, session_file=session_file, path=path, log=log, other_label=other_label) else: sys.exit("The provided objective field is not categorical nor " "a full terms only text field. " "Only these fields can be used with" " --max-categories") # If multi-dataset flag is on, generate a new dataset from the given # list of datasets if args.multi_dataset: dataset, resume = pd.create_new_dataset( datasets, api, args, resume, name=name, description=description, fields=fields, dataset_fields=dataset_fields, objective_field=objective_field, session_file=session_file, path=path, log=log) datasets = [dataset] # Check if the dataset has a generators file associated with it, and # generate a new dataset with the specified field structure if args.new_fields: dataset, resume = pd.create_new_dataset( dataset, api, args, resume, name=name, description=description, fields=fields, dataset_fields=dataset_fields, objective_field=objective_field, session_file=session_file, path=path, log=log) datasets[0] = dataset if args.multi_label and dataset and multi_label_data is None: multi_label_data = l.get_multi_label_data(dataset) (objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync( objective_field, labels, multi_label_data, fields, multi_label_fields) if dataset: # retrieves max_categories data, if any args.max_categories = get_metadata(dataset, 'max_categories', args.max_categories) other_label = get_metadata(dataset, 'other_label', other_label) models, model_ids, ensemble_ids, resume = pm.models_processing( datasets, models, model_ids, objective_field, fields, api, args, resume, name=name, description=description, model_fields=model_fields, session_file=session_file, path=path, log=log, labels=labels, multi_label_data=multi_label_data, other_label=other_label) if models: model = models[0] single_model = len(models) == 1 # If multi-label flag is set and no training_set was provided, label # info is extracted from the user_metadata. If models belong to an # ensemble, the ensemble must be retrieved to get the user_metadata. if model and args.multi_label and multi_label_data is None: if len(ensemble_ids) > 0 and isinstance(ensemble_ids[0], dict): resource = ensemble_ids[0] elif belongs_to_ensemble(model): ensemble_id = get_ensemble_id(model) resource = r.get_ensemble(ensemble_id, api=api, verbosity=args.verbosity, session_file=session_file) else: resource = model multi_label_data = l.get_multi_label_data(resource) # We update the model's public state if needed if model: if isinstance(model, basestring): if not args.evaluate: query_string = MINIMUM_MODEL else: query_string = r.FIELDS_QS model = u.check_resource(model, api.get_model, query_string=query_string) if (args.black_box or args.white_box or (args.shared_flag and r.shared_changed(args.shared, model))): model_args = {} if args.shared_flag and r.shared_changed(args.shared, model): model_args.update(shared=args.shared) if args.black_box or args.white_box: model_args.update(r.set_publish_model_args(args)) if model_args: model = r.update_model(model, model_args, args, api=api, path=path, session_file=session_file) models[0] = model # We get the fields of the model if we haven't got # them yet and need them if model and not args.evaluate and test_set: # If more than one model, use the full field structure if (not single_model and not args.multi_label and belongs_to_ensemble(model)): if len(ensemble_ids) > 0: ensemble_id = ensemble_ids[0] else: ensemble_id = get_ensemble_id(model) local_ensemble = Ensemble(ensemble_id, api=api) fields, objective_field = pm.get_model_fields( model, csv_properties, args, single_model=single_model, multi_label_data=multi_label_data, local_ensemble=local_ensemble) # Fills in all_labels from user_metadata if args.multi_label and not all_labels: (objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync( objective_field, labels, multi_label_data, fields, multi_label_fields) if model: # retrieves max_categories data, if any args.max_categories = get_metadata(model, 'max_categories', args.max_categories) other_label = get_metadata(model, 'other_label', other_label) # If predicting if models and has_test(args) and not args.evaluate: models_per_label = 1 test_dataset = None if args.multi_label: # When prediction starts from existing models, the # multi_label_fields can be retrieved from the user_metadata # in the models if args.multi_label_fields is None and multi_label_fields: multi_label_field_names = [field[1] for field in multi_label_fields] args.multi_label_fields = ",".join(multi_label_field_names) test_set = ps.multi_label_expansion( test_set, test_set_header, objective_field, args, path, labels=labels, session_file=session_file, input_flag=True)[0] test_set_header = True # Remote predictions: predictions are computed as batch predictions # in bigml.com except when --no-batch flag is set on or multi-label # or max-categories are used if (args.remote and not args.no_batch and not args.multi_label and not args.method in [THRESHOLD_CODE, COMBINATION]): # create test source from file test_name = "%s - test" % name if args.test_source is None: (test_source, resume, csv_properties, test_fields) = ps.test_source_processing( test_set, test_set_header, api, args, resume, name=test_name, description=description, field_attributes=test_field_attributes, types=test_types, session_file=session_file, path=path, log=log) else: test_source_id = bigml.api.get_source_id(args.test_source) test_source = api.check_resource(test_source_id, api.get_source) if args.test_dataset is None: # create test dataset from test source dataset_args = r.set_basic_dataset_args(test_name, description, args) test_dataset, resume = pd.alternative_dataset_processing( test_source, "test", dataset_args, api, args, resume, session_file=session_file, path=path, log=log) else: test_dataset_id = bigml.api.get_dataset_id(args.test_dataset) test_dataset = api.check_resource(test_dataset_id, api.get_dataset) csv_properties.update(objective_field=None, objective_field_present=False) test_fields = pd.get_fields_structure(test_dataset, csv_properties) batch_prediction_args = r.set_batch_prediction_args( name, description, args, fields=fields, dataset_fields=test_fields, fields_map=fields_map) remote_predict(model, test_dataset, batch_prediction_args, args, api, resume, prediction_file=output, session_file=session_file, path=path, log=log) else: models_per_label = args.number_of_models if (args.multi_label and len(ensemble_ids) > 0 and args.number_of_models == 1): # use case where ensembles are read from a file models_per_label = len(models) / len(ensemble_ids) predict(test_set, test_set_header, models, fields, output, objective_field, args, api=api, log=log, resume=resume, session_file=session_file, labels=labels, models_per_label=models_per_label, other_label=other_label, multi_label_data=multi_label_data) # When combine_votes flag is used, retrieve the predictions files saved # in the comma separated list of directories and combine them if votes_files: model_id = re.sub(r'.*(model_[a-f0-9]{24})__predictions\.csv$', r'\1', votes_files[0]).replace("_", "/") try: model = u.check_resource(model_id, api.get_model) except ValueError, exception: sys.exit("Failed to get model %s: %s" % (model_id, str(exception))) local_model = Model(model) message = u.dated("Combining votes.\n") u.log_message(message, log_file=session_file, console=args.verbosity) combine_votes(votes_files, local_model.to_prediction, output, args.method)
def compute_output(api, args, training_set, test_set=None, output=None, objective_field=None, description=None, field_attributes=None, types=None, dataset_fields=None, model_fields=None, name=None, training_set_header=True, test_set_header=True, model_ids=None, votes_files=None, resume=False, fields_map=None, test_field_attributes=None, test_types=None): """ Creates one or more models using the `training_set` or uses the ids of previously created BigML models to make predictions for the `test_set`. """ source = None dataset = None model = None models = None fields = None other_label = OTHER ensemble_ids = [] multi_label_data = None multi_label_fields = [] local_ensemble = None # It is compulsory to have a description to publish either datasets or # models if (not description and (args.black_box or args.white_box or args.public_dataset)): sys.exit("You should provide a description to publish.") # When using --max-categories, it is compulsory to specify also the # objective_field if args.max_categories > 0 and objective_field is None: sys.exit("When --max-categories is used, you must also provide the" " --objective field name or column number") # When using --new-fields, it is compulsory to specify also a dataset # id if args.new_fields and not args.dataset: sys.exit("To use --new-fields you must also provide a dataset id" " to generate the new dataset from it.") path = u.check_dir(output) session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG) csv_properties = {} # If logging is required, open the file for logging log = None if args.log_file: u.check_dir(args.log_file) log = args.log_file # If --clear_logs the log files are cleared if args.clear_logs: try: open(log, 'w', 0).close() except IOError: pass # labels to be used in multi-label expansion labels = (map(str.strip, args.labels.split(',')) if args.labels is not None else None) if labels is not None: labels = sorted([label.decode("utf-8") for label in labels]) # multi_label file must be preprocessed to obtain a new extended file if args.multi_label and training_set is not None: (training_set, multi_label_data) = ps.multi_label_expansion( training_set, training_set_header, objective_field, args, path, labels=labels, session_file=session_file) training_set_header = True objective_field = multi_label_data["objective_name"] all_labels = l.get_all_labels(multi_label_data) if not labels: labels = all_labels else: all_labels = labels source, resume, csv_properties, fields = ps.source_processing( training_set, test_set, training_set_header, test_set_header, api, args, resume, name=name, description=description, csv_properties=csv_properties, field_attributes=field_attributes, types=types, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log) if args.multi_label and source: multi_label_data = l.get_multi_label_data(source) (objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync(objective_field, labels, multi_label_data, fields, multi_label_fields) datasets, resume, csv_properties, fields = pd.dataset_processing( source, training_set, test_set, fields, objective_field, api, args, resume, name=name, description=description, dataset_fields=dataset_fields, multi_label_data=multi_label_data, csv_properties=csv_properties, session_file=session_file, path=path, log=log) if datasets: dataset = datasets[0] # If test_split is used, split the dataset in a training and a test dataset # according to the given split if args.test_split > 0: dataset, test_dataset, resume = pd.split_processing( dataset, api, args, resume, name=name, description=description, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log) datasets[0] = dataset # Check if the dataset has a categorical objective field and it # has a max_categories limit for categories if args.max_categories > 0 and len(datasets) == 1: objective_id = fields.field_id(fields.objective_field) if pd.check_max_categories(fields.fields[objective_id]): distribution = pd.get_categories_distribution( dataset, objective_id) if distribution and len(distribution) > args.max_categories: categories = [element[0] for element in distribution] other_label = pd.create_other_label(categories, other_label) datasets, resume = pd.create_categories_datasets( dataset, distribution, fields, args, api, resume, session_file=session_file, path=path, log=log, other_label=other_label) else: sys.exit("The provided objective field is not categorical nor " "a full terms only text field. " "Only these fields can be used with" " --max-categories") # If multi-dataset flag is on, generate a new dataset from the given # list of datasets if args.multi_dataset: dataset, resume = pd.create_new_dataset( datasets, api, args, resume, name=name, description=description, fields=fields, dataset_fields=dataset_fields, objective_field=objective_field, session_file=session_file, path=path, log=log) datasets = [dataset] # Check if the dataset has a generators file associated with it, and # generate a new dataset with the specified field structure if args.new_fields: dataset, resume = pd.create_new_dataset( dataset, api, args, resume, name=name, description=description, fields=fields, dataset_fields=dataset_fields, objective_field=objective_field, session_file=session_file, path=path, log=log) datasets[0] = dataset if args.multi_label and dataset and multi_label_data is None: multi_label_data = l.get_multi_label_data(dataset) (objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync(objective_field, labels, multi_label_data, fields, multi_label_fields) if dataset: # retrieves max_categories data, if any args.max_categories = get_metadata(dataset, 'max_categories', args.max_categories) other_label = get_metadata(dataset, 'other_label', other_label) models, model_ids, ensemble_ids, resume = pm.models_processing( datasets, models, model_ids, objective_field, fields, api, args, resume, name=name, description=description, model_fields=model_fields, session_file=session_file, path=path, log=log, labels=labels, multi_label_data=multi_label_data, other_label=other_label) if models: model = models[0] single_model = len(models) == 1 # If multi-label flag is set and no training_set was provided, label # info is extracted from the user_metadata. If models belong to an # ensemble, the ensemble must be retrieved to get the user_metadata. if model and args.multi_label and multi_label_data is None: if len(ensemble_ids) > 0 and isinstance(ensemble_ids[0], dict): resource = ensemble_ids[0] elif belongs_to_ensemble(model): ensemble_id = get_ensemble_id(model) resource = r.get_ensemble(ensemble_id, api=api, verbosity=args.verbosity, session_file=session_file) else: resource = model multi_label_data = l.get_multi_label_data(resource) # We update the model's public state if needed if model: if isinstance(model, basestring): if not args.evaluate: query_string = MINIMUM_MODEL else: query_string = r.FIELDS_QS model = u.check_resource(model, api.get_model, query_string=query_string) if (args.black_box or args.white_box or r.shared_changed(args.shared, model)): model_args = {} if r.shared_changed(args.shared, model): model_args.update(shared=args.shared) if args.black_box or args.white_box: model_args.update(r.set_publish_model_args(args)) if model_args: model = r.update_model(model, model_args, args, api=api, path=path, session_file=session_file) models[0] = model # We get the fields of the model if we haven't got # them yet and need them if model and not args.evaluate and test_set: # If more than one model, use the full field structure if (not single_model and not args.multi_label and belongs_to_ensemble(model)): if len(ensemble_ids) > 0: ensemble_id = ensemble_ids[0] else: ensemble_id = get_ensemble_id(model) local_ensemble = Ensemble(ensemble_id, api=api) fields, objective_field = pm.get_model_fields( model, csv_properties, args, single_model=single_model, multi_label_data=multi_label_data, local_ensemble=local_ensemble) # Fills in all_labels from user_metadata if args.multi_label and not all_labels: (objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync(objective_field, labels, multi_label_data, fields, multi_label_fields) if model: # retrieves max_categories data, if any args.max_categories = get_metadata(model, 'max_categories', args.max_categories) other_label = get_metadata(model, 'other_label', other_label) # If predicting if models and has_test(args) and not args.evaluate: models_per_label = 1 test_dataset = None if args.multi_label: # When prediction starts from existing models, the # multi_label_fields can be retrieved from the user_metadata # in the models if args.multi_label_fields is None and multi_label_fields: multi_label_field_names = [ field[1] for field in multi_label_fields ] args.multi_label_fields = ",".join(multi_label_field_names) test_set = ps.multi_label_expansion(test_set, test_set_header, objective_field, args, path, labels=labels, session_file=session_file, input_flag=True)[0] test_set_header = True # Remote predictions: predictions are computed as batch predictions # in bigml.com except when --no-batch flag is set on or multi-label # or max-categories are used if (args.remote and not args.no_batch and not args.multi_label and not args.method in [THRESHOLD_CODE, COMBINATION]): # create test source from file test_name = "%s - test" % name if args.test_source is None: (test_source, resume, csv_properties, test_fields) = ps.test_source_processing( test_set, test_set_header, api, args, resume, name=test_name, description=description, field_attributes=test_field_attributes, types=test_types, session_file=session_file, path=path, log=log) else: test_source_id = bigml.api.get_source_id(args.test_source) test_source = api.check_resource(test_source_id, api.get_source) if args.test_dataset is None: # create test dataset from test source dataset_args = r.set_basic_dataset_args( test_name, description, args) test_dataset, resume = pd.alternative_dataset_processing( test_source, "test", dataset_args, api, args, resume, session_file=session_file, path=path, log=log) else: test_dataset_id = bigml.api.get_dataset_id(args.test_dataset) test_dataset = api.check_resource(test_dataset_id, api.get_dataset) csv_properties.update(objective_field=None, objective_field_present=False) test_fields = pd.get_fields_structure(test_dataset, csv_properties) batch_prediction_args = r.set_batch_prediction_args( name, description, args, fields=fields, dataset_fields=test_fields, fields_map=fields_map) remote_predict(model, test_dataset, batch_prediction_args, args, api, resume, prediction_file=output, session_file=session_file, path=path, log=log) else: models_per_label = args.number_of_models if (args.multi_label and len(ensemble_ids) > 0 and args.number_of_models == 1): # use case where ensembles are read from a file models_per_label = len(models) / len(ensemble_ids) predict(test_set, test_set_header, models, fields, output, objective_field, args, api=api, log=log, resume=resume, session_file=session_file, labels=labels, models_per_label=models_per_label, other_label=other_label, multi_label_data=multi_label_data) # When combine_votes flag is used, retrieve the predictions files saved # in the comma separated list of directories and combine them if votes_files: model_id = re.sub(r'.*(model_[a-f0-9]{24})__predictions\.csv$', r'\1', votes_files[0]).replace("_", "/") try: model = u.check_resource(model_id, api.get_model) except ValueError, exception: sys.exit("Failed to get model %s: %s" % (model_id, str(exception))) local_model = Model(model) message = u.dated("Combining votes.\n") u.log_message(message, log_file=session_file, console=args.verbosity) combine_votes(votes_files, local_model.to_prediction, output, args.method)
models[0] = model # We get the fields of the model if we haven't got # them yet and need them if model and not args.evaluate and args.test_set: # If more than one model, use the full field structure if (not single_model and not args.multi_label and belongs_to_ensemble(model)): if len(ensemble_ids) > 0: ensemble_id = ensemble_ids[0] else: ensemble_id = get_ensemble_id(model) local_ensemble = Ensemble(ensemble_id, api=api, max_models=args.max_batch_models) fields = pm.get_model_fields( model, csv_properties, args, single_model=single_model, multi_label_data=multi_label_data) # Free memory after getting fields local_ensemble = None gc.collect() # Fills in all_labels from user_metadata if args.multi_label and not all_labels: (args.objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync(args.objective_field, labels, multi_label_data, fields, multi_label_fields) if model: # retrieves max_categories data, if any
def compute_output(api, args): """ Creates one or more models using the `training_set` or uses the ids of previously created BigML models to make predictions for the `test_set`. """ source = None dataset = None model = None models = None fields = None other_label = OTHER ensemble_ids = [] multi_label_data = None multi_label_fields = [] #local_ensemble = None test_dataset = None datasets = None # variables from command-line options resume = args.resume_ model_ids = args.model_ids_ output = args.predictions dataset_fields = args.dataset_fields_ check_args_coherence(args) path = u.check_dir(output) session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG) csv_properties = {} # If logging is required set the file for logging log = None if args.log_file: u.check_dir(args.log_file) log = args.log_file # If --clear_logs the log files are cleared clear_log_files([log]) # labels to be used in multi-label expansion labels = (None if args.labels is None else [label.strip() for label in args.labels.split(args.args_separator)]) if labels is not None: labels = sorted([label for label in labels]) # multi_label file must be preprocessed to obtain a new extended file if args.multi_label and args.training_set is not None: (args.training_set, multi_label_data) = ps.multi_label_expansion( args.training_set, args.train_header, args, path, labels=labels, session_file=session_file) args.train_header = True args.objective_field = multi_label_data["objective_name"] all_labels = l.get_all_labels(multi_label_data) if not labels: labels = all_labels else: all_labels = labels if args.objective_field: csv_properties.update({'objective_field': args.objective_field}) if args.source_file: # source is retrieved from the contents of the given local JSON file source, csv_properties, fields = u.read_local_resource( args.source_file, csv_properties=csv_properties) else: # source is retrieved from the remote object source, resume, csv_properties, fields = ps.source_processing( api, args, resume, csv_properties=csv_properties, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log) if args.multi_label and source: multi_label_data = l.get_multi_label_data(source) (args.objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync(args.objective_field, labels, multi_label_data, fields, multi_label_fields) if fields and args.export_fields: fields.summary_csv(os.path.join(path, args.export_fields)) if args.dataset_file: # dataset is retrieved from the contents of the given local JSON file model_dataset, csv_properties, fields = u.read_local_resource( args.dataset_file, csv_properties=csv_properties) if not args.datasets: datasets = [model_dataset] dataset = model_dataset else: datasets = u.read_datasets(args.datasets) if not datasets: # dataset is retrieved from the remote object datasets, resume, csv_properties, fields = pd.dataset_processing( source, api, args, resume, fields=fields, csv_properties=csv_properties, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log) if datasets: dataset = datasets[0] if args.to_csv is not None: resume = pd.export_dataset(dataset, api, args, resume, session_file=session_file, path=path) # Now we have a dataset, let's check if there's an objective_field # given by the user and update it in the fields structure args.objective_id_ = get_objective_id(args, fields) # If test_split is used, split the dataset in a training and a test dataset # according to the given split if args.test_split > 0: dataset, test_dataset, resume = pd.split_processing( dataset, api, args, resume, multi_label_data=multi_label_data, session_file=session_file, path=path, log=log) datasets[0] = dataset # Check if the dataset has a categorical objective field and it # has a max_categories limit for categories if args.max_categories > 0 and len(datasets) == 1: if pd.check_max_categories(fields.fields[args.objective_id_]): distribution = pd.get_categories_distribution(dataset, args.objective_id_) if distribution and len(distribution) > args.max_categories: categories = [element[0] for element in distribution] other_label = pd.create_other_label(categories, other_label) datasets, resume = pd.create_categories_datasets( dataset, distribution, fields, args, api, resume, session_file=session_file, path=path, log=log, other_label=other_label) else: sys.exit("The provided objective field is not categorical nor " "a full terms only text field. " "Only these fields can be used with" " --max-categories") # If multi-dataset flag is on, generate a new dataset from the given # list of datasets if args.multi_dataset: dataset, resume = pd.create_new_dataset( datasets, api, args, resume, fields=fields, session_file=session_file, path=path, log=log) datasets = [dataset] # Check if the dataset has a generators file associated with it, and # generate a new dataset with the specified field structure. Also # if the --to-dataset flag is used to clone or sample the original dataset if args.new_fields or (args.sample_rate != 1 and args.no_model) or \ (args.lisp_filter or args.json_filter) and not has_source(args): if fields is None: if isinstance(dataset, basestring): dataset = u.check_resource(dataset, api=api) fields = Fields(dataset, csv_properties) args.objective_id_ = get_objective_id(args, fields) args.objective_name_ = fields.field_name(args.objective_id_) dataset, resume = pd.create_new_dataset( dataset, api, args, resume, fields=fields, session_file=session_file, path=path, log=log) datasets[0] = dataset # rebuild fields structure for new ids and fields csv_properties.update({'objective_field': args.objective_name_, 'objective_field_present': True}) fields = pd.get_fields_structure(dataset, csv_properties) args.objective_id_ = get_objective_id(args, fields) if args.multi_label and dataset and multi_label_data is None: multi_label_data = l.get_multi_label_data(dataset) (args.objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync(args.objective_field, labels, multi_label_data, fields, multi_label_fields) if dataset: # retrieves max_categories data, if any args.max_categories = get_metadata(dataset, 'max_categories', args.max_categories) other_label = get_metadata(dataset, 'other_label', other_label) if fields and args.export_fields: fields.summary_csv(os.path.join(path, args.export_fields)) if args.model_file: # model is retrieved from the contents of the given local JSON file model, csv_properties, fields = u.read_local_resource( args.model_file, csv_properties=csv_properties) models = [model] model_ids = [model['resource']] ensemble_ids = [] elif args.ensemble_file: # model is retrieved from the contents of the given local JSON file ensemble, csv_properties, fields = u.read_local_resource( args.ensemble_file, csv_properties=csv_properties) model_ids = ensemble['object']['models'][:] ensemble_ids = [ensemble['resource']] models = model_ids[:] model = retrieve_resource(bigml.api.BigML(storage='./storage'), models[0], query_string=r.ALL_FIELDS_QS) models[0] = model else: # model is retrieved from the remote object models, model_ids, ensemble_ids, resume = pm.models_processing( datasets, models, model_ids, api, args, resume, fields=fields, session_file=session_file, path=path, log=log, labels=labels, multi_label_data=multi_label_data, other_label=other_label) if models: model = models[0] single_model = len(models) == 1 # If multi-label flag is set and no training_set was provided, label # info is extracted from the user_metadata. If models belong to an # ensemble, the ensemble must be retrieved to get the user_metadata. if model and args.multi_label and multi_label_data is None: if len(ensemble_ids) > 0 and isinstance(ensemble_ids[0], dict): resource = ensemble_ids[0] elif belongs_to_ensemble(model): ensemble_id = get_ensemble_id(model) resource = r.get_ensemble(ensemble_id, api=api, verbosity=args.verbosity, session_file=session_file) else: resource = model multi_label_data = l.get_multi_label_data(resource) # We update the model's public state if needed if model: if (isinstance(model, basestring) or bigml.api.get_status(model)['code'] != bigml.api.FINISHED): if not args.evaluate and not a.has_train(args) and \ not a.has_test(args) : query_string = MINIMUM_MODEL elif not args.test_header: query_string = r.ALL_FIELDS_QS else: query_string = "%s;%s" % (r.ALL_FIELDS_QS, r.FIELDS_QS) model = u.check_resource(model, api.get_model, query_string=query_string) models[0] = model if (args.black_box or args.white_box or (args.shared_flag and r.shared_changed(args.shared, model))): model_args = {} if args.shared_flag and r.shared_changed(args.shared, model): model_args.update(shared=args.shared) if args.black_box or args.white_box: model_args.update(r.set_publish_model_args(args)) if model_args: model = r.update_model(model, model_args, args, api=api, path=path, session_file=session_file) models[0] = model # We get the fields of the model if we haven't got # them yet and need them if model and not args.evaluate and (a.has_test(args) or args.export_fields): # If more than one model, use the full field structure if (not single_model and not args.multi_label and belongs_to_ensemble(model)): if len(ensemble_ids) > 0: ensemble_id = ensemble_ids[0] args.ensemble_ids_ = ensemble_ids else: ensemble_id = get_ensemble_id(model) fields = pm.get_model_fields( model, csv_properties, args, single_model=single_model, multi_label_data=multi_label_data) # Free memory after getting fields # local_ensemble = None gc.collect() # Fills in all_labels from user_metadata if args.multi_label and not all_labels: (args.objective_field, labels, all_labels, multi_label_fields) = l.multi_label_sync(args.objective_field, labels, multi_label_data, fields, multi_label_fields) if model: # retrieves max_categories data, if any args.max_categories = get_metadata(model, 'max_categories', args.max_categories) other_label = get_metadata(model, 'other_label', other_label) if fields and args.export_fields: fields.summary_csv(os.path.join(path, args.export_fields)) # If predicting if (models and (a.has_test(args) or (test_dataset and args.remote)) and not args.evaluate): models_per_label = 1 if test_dataset is None: test_dataset = get_test_dataset(args) if args.multi_label: # When prediction starts from existing models, the # multi_label_fields can be retrieved from the user_metadata # in the models if args.multi_label_fields is None and multi_label_fields: multi_label_field_names = [field[1] for field in multi_label_fields] args.multi_label_fields = ",".join(multi_label_field_names) test_set = ps.multi_label_expansion( args.test_set, args.test_header, args, path, labels=labels, session_file=session_file, input_flag=True)[0] test_set_header = True # Remote predictions: predictions are computed as batch predictions # in bigml.com except when --no-batch flag is set on or multi-label # or max-categories are used if (args.remote and not args.no_batch and not args.multi_label and not args.method in [THRESHOLD_CODE, COMBINATION]): # create test source from file test_name = "%s - test" % args.name if args.test_source is None: test_properties = ps.test_source_processing( api, args, resume, session_file=session_file, path=path, log=log) (test_source, resume, csv_properties, test_fields) = test_properties else: test_source_id = bigml.api.get_source_id(args.test_source) test_source = api.check_resource(test_source_id) if test_dataset is None: # create test dataset from test source dataset_args = r.set_basic_dataset_args(args, name=test_name) test_dataset, resume = pd.alternative_dataset_processing( test_source, "test", dataset_args, api, args, resume, session_file=session_file, path=path, log=log) else: test_dataset_id = bigml.api.get_dataset_id(test_dataset) test_dataset = api.check_resource(test_dataset_id) csv_properties.update(objective_field=None, objective_field_present=False) test_fields = pd.get_fields_structure(test_dataset, csv_properties) if args.to_dataset and args.dataset_off: model = api.check_resource(model['resource'], query_string=r.ALL_FIELDS_QS) model_fields = Fields(model) objective_field_name = model_fields.field_name( \ model_fields.objective_field) if objective_field_name in test_fields.fields_by_name.keys(): args.prediction_name = "%s (predicted)" % \ objective_field_name batch_prediction_args = r.set_batch_prediction_args( args, fields=fields, dataset_fields=test_fields) remote_predict(model, test_dataset, batch_prediction_args, args, api, resume, prediction_file=output, session_file=session_file, path=path, log=log) else: models_per_label = args.number_of_models if (args.multi_label and len(ensemble_ids) > 0 and args.number_of_models == 1): # use case where ensembles are read from a file models_per_label = len(models) / len(ensemble_ids) predict(models, fields, args, api=api, log=log, resume=resume, session_file=session_file, labels=labels, models_per_label=models_per_label, other_label=other_label, multi_label_data=multi_label_data) # When combine_votes flag is used, retrieve the predictions files saved # in the comma separated list of directories and combine them if args.votes_files_: model_id = re.sub(r'.*(model_[a-f0-9]{24})__predictions\.csv$', r'\1', args.votes_files_[0]).replace("_", "/") try: model = u.check_resource(model_id, api.get_model) except ValueError, exception: sys.exit("Failed to get model %s: %s" % (model_id, str(exception))) local_model = Model(model) message = u.dated("Combining votes.\n") u.log_message(message, log_file=session_file, console=args.verbosity) combine_votes(args.votes_files_, local_model.to_prediction, output, method=args.method)