示例#1
0
def remote_forecast(time_series,
                    forecast_args, args,
                    api, resume, prediction_file=None, session_file=None,
                    path=None, log=None):
    """Computes a remote forecast.

    """

    time_series_id = bigml.api.get_time_series_id( \
        time_series)
    # if resuming, try to extract dataset form log files
    if resume:
        message = u.dated("Forecast not found. Resuming.\n")
        resume, forecast = c.checkpoint(
            c.is_forecast_created, path, debug=args.debug,
            message=message, log_file=session_file, console=args.verbosity)
    if not resume:
        local_time_series = TimeSeries(time_series,
                                       api=args.retrieve_api_)
        output = args.predictions
        if args.test_set is not None:
            input_data = u.read_json(args.test_set)
        elif args.horizon is not None:
            input_data = {local_time_series.objective_id: { \
                "horizon": args.horizon}}

        forecast = create_forecast(
            time_series_id, input_data, forecast_args,
            args, api, session_file=session_file, path=path, log=log)

        write_forecasts(forecast["object"]["forecast"]["result"], output)
示例#2
0
def attribute_args(command_args):
    """Reads the attributes in JSON files

    """
    # Parses attributes in json format if provided
    command_args.json_args = {}

    for resource_type in RESOURCE_TYPES:
        attributes_file = getattr(command_args,
                                  "%s_attributes" % resource_type, None)
        if attributes_file is not None:
            command_args.json_args[resource_type] = u.read_json(
                attributes_file)
        else:
            command_args.json_args[resource_type] = {}
示例#3
0
文件: args.py 项目: felmarlop/bigmler
def attribute_args(command_args):
    """Reads the attributes in JSON files

    """
    # Parses attributes in json format if provided
    command_args.json_args = {}

    for resource_type in RESOURCE_TYPES:
        attributes_file = getattr(command_args,
                                  "%s_attributes" % resource_type, None)
        if attributes_file is not None:
            command_args.json_args[resource_type] = u.read_json(
                attributes_file)
        else:
            command_args.json_args[resource_type] = {}
示例#4
0
def forecast(time_series, args, session_file=None):
    """Computes a time-series forecast

    """

    local_time_series = TimeSeries(time_series, api=args.retrieve_api_)

    output = args.predictions
    # Local forecasts: Forecasts are computed locally
    message = u.dated("Creating local forecasts.\n")
    u.log_message(message, log_file=session_file, console=args.verbosity)
    input_data = []
    if args.test_set is not None:
        input_data = [u.read_json(args.test_set)]
    elif args.horizon is not None:
        input_data = [{local_time_series.objective_id: { \
            "horizon": args.horizon}}]
    write_forecasts(local_time_series.forecast(*input_data), output)
示例#5
0
def remote_forecast(time_series,
                    forecast_args,
                    args,
                    api,
                    resume,
                    prediction_file=None,
                    session_file=None,
                    path=None,
                    log=None):
    """Computes a remote forecast.

    """

    time_series_id = bigml.api.get_time_series_id( \
        time_series)
    # if resuming, try to extract dataset form log files
    if resume:
        message = u.dated("Forecast not found. Resuming.\n")
        resume, forecast = c.checkpoint(c.is_forecast_created,
                                        path,
                                        debug=args.debug,
                                        message=message,
                                        log_file=session_file,
                                        console=args.verbosity)
    if not resume:
        local_time_series = TimeSeries(time_series, api=args.retrieve_api_)
        output = args.predictions
        if args.test_set is not None:
            input_data = u.read_json(args.test_set)
        elif args.horizon is not None:
            input_data = {local_time_series.objective_id: { \
                "horizon": args.horizon}}

        forecast = create_forecast(time_series_id,
                                   input_data,
                                   forecast_args,
                                   args,
                                   api,
                                   session_file=session_file,
                                   path=path,
                                   log=log)

        write_forecasts(forecast["object"]["forecast"]["result"], output)
示例#6
0
def forecast(time_series, args, session_file=None):
    """Computes a time-series forecast

    """

    local_time_series = TimeSeries(time_series,
                                   api=args.retrieve_api_)

    output = args.predictions
    # Local forecasts: Forecasts are computed locally
    message = u.dated("Creating local forecasts.\n")
    u.log_message(message, log_file=session_file, console=args.verbosity)
    input_data = []
    if args.test_set is not None:
        input_data = [u.read_json(args.test_set)]
    elif args.horizon is not None:
        input_data = [{local_time_series.objective_id: { \
            "horizon": args.horizon}}]
    write_forecasts(local_time_series.forecast(*input_data),
                    output)
示例#7
0
文件: args.py 项目: r-wheeler/bigmler
def transform_args(command_args, flags, api, user_defaults):
    """Transforms the formatted argument strings into structured arguments

    """
    # Parses attributes in json format if provided
    command_args.json_args = {}

    for resource_type in RESOURCE_TYPES:
        attributes_file = getattr(command_args,
                                  "%s_attributes" % resource_type, None)
        if attributes_file is not None:
            command_args.json_args[resource_type] = u.read_json(
                attributes_file)
        else:
            command_args.json_args[resource_type] = {}

    # Parses dataset generators in json format if provided
    if command_args.new_fields:
        json_generators = u.read_json(command_args.new_fields)
        command_args.dataset_json_generators = json_generators
    else:
        command_args.dataset_json_generators = {}

    # Parses multi-dataset attributes in json such as field maps
    if command_args.multi_dataset_attributes:
        multi_dataset_json = u.read_json(command_args.multi_dataset_attributes)
        command_args.multi_dataset_json = multi_dataset_json
    else:
        command_args.multi_dataset_json = {}

    dataset_ids = None
    command_args.dataset_ids = []
    # Parses dataset/id if provided.
    if command_args.datasets:
        dataset_ids = u.read_datasets(command_args.datasets)
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    # Reading test dataset ids is delayed till the very moment of use to ensure
    # that the newly generated resources files can be used there too
    command_args.test_dataset_ids = []

    # Retrieve dataset/ids if provided.
    if command_args.dataset_tag:
        dataset_ids = dataset_ids.extend(
            u.list_ids(api.list_datasets,
                       "tags__in=%s" % command_args.dataset_tag))
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless that it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append('BigMLer')
        command_args.tag.append('BigMLer_%s' % NOW)

    # Checks combined votes method
    try:
        if (command_args.method and command_args.method != COMBINATION_LABEL
                and not (command_args.method in COMBINATION_WEIGHTS.keys())):
            command_args.method = 0
        else:
            combiner_methods = dict([[value, key]
                                     for key, value in COMBINER_MAP.items()])
            combiner_methods[COMBINATION_LABEL] = COMBINATION
            command_args.method = combiner_methods.get(command_args.method, 0)
    except AttributeError:
        pass

    # Checks missing_strategy
    try:
        if (command_args.missing_strategy
                and not (command_args.missing_strategy
                         in MISSING_STRATEGIES.keys())):
            command_args.missing_strategy = 0
        else:
            command_args.missing_strategy = MISSING_STRATEGIES.get(
                command_args.missing_strategy, 0)
    except AttributeError:
        pass

    # Adds replacement=True if creating ensemble and nothing is specified
    try:
        if (command_args.number_of_models > 1 and not command_args.replacement
                and not '--no-replacement' in flags
                and not 'replacement' in user_defaults
                and not '--no-randomize' in flags
                and not 'randomize' in user_defaults
                and not '--sample-rate' in flags
                and not 'sample_rate' in user_defaults):
            command_args.replacement = True
    except AttributeError:
        pass
    try:
        # Old value for --prediction-info='full data' maps to 'full'
        if command_args.prediction_info == 'full data':
            print("WARNING: 'full data' is a deprecated value. Use"
                  " 'full' instead")
            command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass

    # Parses class, weight pairs for objective weight
    try:
        if command_args.objective_weights:
            objective_weights = (u.read_objective_weights(
                command_args.objective_weights))
            command_args.objective_weights_json = objective_weights
    except AttributeError:
        pass

    try:
        command_args.multi_label_fields_list = []
        if command_args.multi_label_fields is not None:
            multi_label_fields = command_args.multi_label_fields.strip()
            command_args.multi_label_fields_list = multi_label_fields.split(
                command_args.args_separator)
    except AttributeError:
        pass

    # Sets shared_flag if --shared or --unshared has been used
    if '--shared' in flags or '--unshared' in flags:
        command_args.shared_flag = True
    else:
        command_args.shared_flag = False

    # Set remote on if scoring a trainind dataset in bigmler anomaly
    try:
        if command_args.score:
            command_args.remote = True
            if not "--prediction-info" in flags:
                command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass

    command_args.has_models_ = (
        (hasattr(command_args, 'model') and command_args.model)
        or (hasattr(command_args, 'models') and command_args.models)
        or (hasattr(command_args, 'ensemble') and command_args.ensemble)
        or (hasattr(command_args, 'ensembles') and command_args.ensembles)
        or (hasattr(command_args, 'cluster') and command_args.cluster)
        or (hasattr(command_args, 'clusters') and command_args.clusters)
        or (hasattr(command_args, 'model_tag') and command_args.model_tag)
        or (hasattr(command_args, 'anomaly') and command_args.anomaly)
        or (hasattr(command_args, 'anomalies') and command_args.anomalies) or
        (hasattr(command_args, 'ensemble_tag') and command_args.ensemble_tag)
        or (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag)
        or (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag))

    command_args.has_datasets_ = (
        (hasattr(command_args, 'dataset') and command_args.dataset)
        or (hasattr(command_args, 'datasets') and command_args.datasets)
        or (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag))

    command_args.has_test_datasets_ = (
        (hasattr(command_args, 'test_dataset') and command_args.test_dataset)
        or
        (hasattr(command_args, 'test_datasets') and command_args.test_datasets)
        or (hasattr(command_args, 'test_dataset_tag')
            and command_args.test_dataset_tag))
示例#8
0
文件: args.py 项目: felmarlop/bigmler
def get_output_args(api, command_args, resume):
    """Returns the output args needed for the main bigmler computation process

    """
    try:
        if command_args.train_stdin:
            if command_args.test_stdin:
                sys.exit("The standard input can't be used both for training "
                         "and testing. Choose one of them")
            command_args.training_set = StringIO(sys.stdin.read())
        elif command_args.test_stdin:
            command_args.test_set = StringIO(sys.stdin.read())
    except AttributeError:
        pass

    try:
        if command_args.objective_field:
            objective = command_args.objective_field
            try:
                command_args.objective_field = int(objective)
            except ValueError:
                if not command_args.train_header:
                    sys.exit("The %s has been set as objective field but"
                             " the file has not been marked as containing"
                             " headers.\nPlease set the --train-header flag if"
                             " the file has headers or use a column number"
                             " to set the objective field." % objective)
    except AttributeError:
        pass

    command_args.resume_ = resume
    command_args.predictions = command_args.output
    command_args.projections = command_args.output

    # Reads description if provided.
    try:
        if command_args.description:
            description_arg = u.read_description(command_args.description)
            command_args.description_ = description_arg
        else:
            command_args.description_ = DEFAULT_DESCRIPTION
    except AttributeError:
        pass

    # Parses fields if provided.
    try:
        if command_args.field_attributes:
            field_attributes_arg = (u.read_field_attributes(
                command_args.field_attributes))
            command_args.field_attributes_ = field_attributes_arg
        else:
            command_args.field_attributes_ = []
    except AttributeError:
        pass
    try:
        if command_args.test_field_attributes:
            field_attributes_arg = (u.read_field_attributes(
                command_args.test_field_attributes))
            command_args.test_field_attributes_ = field_attributes_arg
        else:
            command_args.test_field_attributes_ = []
    except AttributeError:
        pass

    # Parses types if provided.
    try:
        if command_args.types:
            types_arg = u.read_types(command_args.types)
            command_args.types_ = types_arg
        else:
            command_args.types_ = None
        if command_args.test_types:
            types_arg = u.read_types(command_args.test_types)
            command_args.test_types_ = types_arg
        else:
            command_args.test_types_ = None
    except AttributeError:
        pass

    # Parses dataset fields if provided.
    try:
        if command_args.dataset_fields:
            dataset_fields_arg = [
                field.strip() for field in command_args.dataset_fields.split(
                    command_args.args_separator)
            ]
            command_args.dataset_fields_ = dataset_fields_arg
        else:
            command_args.dataset_fields_ = []
    except AttributeError:
        pass

    # Parses model input fields if provided.
    try:
        if command_args.model_fields:
            model_fields_arg = [
                field.strip() for field in command_args.model_fields.split(
                    command_args.args_separator)
            ]
            command_args.model_fields_ = model_fields_arg
        else:
            command_args.model_fields_ = []
    except AttributeError:
        pass

    # Parses cluster input fields if provided.
    try:
        if command_args.cluster_fields:
            cluster_fields_arg = [
                field.strip() for field in command_args.cluster_fields.split(
                    command_args.args_separator)
            ]
            command_args.cluster_fields_ = cluster_fields_arg
        else:
            command_args.cluster_fields_ = []
    except AttributeError:
        pass

    # Parses association input fields if provided.
    try:
        if command_args.association_fields:
            association_fields_arg = [
                field.strip() for field in \
                command_args.association_fields.split( \
                command_args.args_separator)]
            command_args.association_fields_ = association_fields_arg
        else:
            command_args.association_fields_ = []
    except AttributeError:
        pass

    # Parses anomaly input fields if provided.
    try:
        if command_args.anomaly_fields:
            anomaly_fields_arg = [
                field.strip() for field in command_args.anomaly_fields.split(
                    command_args.args_separator)
            ]
            command_args.anomaly_fields_ = anomaly_fields_arg
        else:
            command_args.anomaly_fields_ = []
    except AttributeError:
        pass

    # Parses logistic regression input fields if provided.
    try:
        if command_args.logistic_fields:
            logistic_fields_arg = [
                field.strip() for field in command_args.logistic_fields.split(
                    command_args.args_separator)
            ]
            command_args.logistic_fields_ = logistic_fields_arg
        else:
            command_args.logistic_fields_ = []
    except AttributeError:
        pass

    # Parses linear regression input fields if provided.
    try:
        if command_args.linear_fields:
            linear_fields_arg = [
                field.strip() for field in command_args.linear_fields.split(
                    command_args.args_separator)
            ]
            command_args.linear_fields_ = linear_fields_arg
        else:
            command_args.linear_fields_ = []
    except AttributeError:
        pass

    # Parses deepnet input fields if provided.
    try:
        if command_args.deepnet_fields:
            deepnet_fields_arg = [
                field.strip() for field in command_args.deepnet_fields.split(
                    command_args.args_separator)
            ]
            command_args.deepnet_fields_ = deepnet_fields_arg
        else:
            command_args.deepnet_fields_ = []
    except AttributeError:
        pass

    # Parses topic model fields if provided.
    try:
        if command_args.topic_fields:
            topic_fields_arg = [
                field.strip() for field in command_args.topic_fields.split(
                    command_args.args_separator)
            ]
            command_args.topic_model_fields_ = topic_fields_arg
        else:
            command_args.topic_model_fields_ = []
    except AttributeError:
        pass

    # Parses pca fields if provided.
    try:
        if command_args.pca_fields:
            pca_fields_arg = [
                field.strip() for field in command_args.pca_fields.split(
                    command_args.args_separator)
            ]
            command_args.pca_fields_ = pca_fields_arg
        else:
            command_args.pca_fields_ = []
    except AttributeError:
        pass

    # Parses field_codings for deepnet
    try:
        if command_args.field_codings:
            command_args.field_codings_ = u.read_json(
                command_args.field_codings)
        else:
            command_args.field_codings_ = []
    except AttributeError:
        pass

    # Parses imports for scripts and libraries.
    try:
        if command_args.imports:
            imports_arg = [
                field.strip() for field in command_args.imports.split(
                    command_args.args_separator)
            ]
            command_args.imports_ = imports_arg
        else:
            command_args.imports_ = []
    except AttributeError:
        pass

    # Parses objective fields for time-series.
    try:
        if command_args.objectives:
            objective_fields_arg = [
                field.strip() for field in command_args.objectives.split(
                    command_args.args_separator)
            ]
            command_args.objective_fields_ = objective_fields_arg
        else:
            command_args.objective_fields_ = []
    except AttributeError:
        pass

    # Parses range.
    try:
        if command_args.range:
            range_arg = [
                value.strip() for value in command_args.range.split(
                    command_args.args_separator)
            ]
            command_args.range_ = range_arg
        else:
            command_args.range_ = []
    except AttributeError:
        pass

    # Parses parameters for scripts.
    try:
        if command_args.declare_inputs:
            command_args.parameters_ = u.read_json(command_args.declare_inputs)
        else:
            command_args.parameters_ = []
    except AttributeError:
        pass

    # Parses creation_defaults for executions.
    try:
        if command_args.creation_defaults:
            command_args.creation_defaults_ = u.read_json(
                command_args.creation_defaults)
        else:
            command_args.creation_defaults_ = {}
    except AttributeError:
        pass

    # Parses arguments for executions.
    try:
        if command_args.inputs:
            command_args.arguments_ = u.read_json(command_args.inputs)
        else:
            command_args.arguments_ = []
    except AttributeError:
        pass

    # Parses input maps for executions.
    try:
        if command_args.input_maps:
            command_args.input_maps_ = u.read_json(command_args.input_maps)
        else:
            command_args.input_maps_ = []
    except AttributeError:
        pass

    # Parses outputs for executions.
    try:
        if command_args.outputs:
            command_args.outputs_ = u.read_json(command_args.outputs)
        else:
            command_args.outputs_ = []
    except AttributeError:
        pass

    # Parses outputs for scripts.
    try:
        if command_args.declare_outputs:
            command_args.declare_outputs_ = \
                u.read_json(command_args.declare_outputs)
        else:
            command_args.declare_outputs_ = []
    except AttributeError:
        pass

    model_ids = []
    try:
        # Parses model/ids if provided.
        if command_args.models:
            model_ids = u.read_resources(command_args.models)
        command_args.model_ids_ = model_ids
    except AttributeError:
        pass

    # Retrieve model/ids if provided.
    try:
        if command_args.model_tag:
            model_ids = (model_ids + u.list_ids(
                api.list_models, "tags__in=%s" % command_args.model_tag))
        command_args.model_ids_ = model_ids
    except AttributeError:
        pass

    # Reads votes files in the provided directories.
    try:
        if command_args.votes_dirs:
            dirs = [
                directory.strip() for directory in
                command_args.votes_dirs.split(command_args.args_separator)
            ]
            votes_path = os.path.dirname(command_args.predictions)
            votes_files = u.read_votes_files(dirs, votes_path)
            command_args.votes_files_ = votes_files
        else:
            command_args.votes_files_ = []
    except AttributeError:
        pass

    # Parses fields map if provided.
    try:
        if command_args.fields_map:
            fields_map_arg = u.read_fields_map(command_args.fields_map)
            command_args.fields_map_ = fields_map_arg
        else:
            command_args.fields_map_ = None
    except AttributeError:
        pass

    cluster_ids = []
    try:
        # Parses cluster/ids if provided.
        if command_args.clusters:
            cluster_ids = u.read_resources(command_args.clusters)
        command_args.cluster_ids_ = cluster_ids
    except AttributeError:
        pass

    # Retrieve cluster/ids if provided.
    try:
        if command_args.cluster_tag:
            cluster_ids = (cluster_ids + u.list_ids(
                api.list_clusters, "tags__in=%s" % command_args.cluster_tag))
        command_args.cluster_ids_ = cluster_ids
    except AttributeError:
        pass

    association_ids = []
    try:
        # Parses association/ids if provided.
        if command_args.associations:
            association_ids = u.read_resources(command_args.associations)
        command_args.association_ids_ = association_ids
    except AttributeError:
        pass

    # Retrieve association/ids if provided.
    try:
        if command_args.association_tag:
            association_ids = (
                association_ids +
                u.list_ids(api.list_associations,
                           "tags__in=%s" % command_args.association_tag))
        command_args.association_ids_ = association_ids
    except AttributeError:
        pass

    logistic_regression_ids = []
    try:
        # Parses logisticregression/ids if provided.
        if command_args.logistic_regressions:
            logistic_regression_ids = u.read_resources( \
                command_args.logistic_regressions)
        command_args.logistic_regression_ids_ = logistic_regression_ids
    except AttributeError:
        pass

    # Retrieve logsticregression/ids if provided.
    try:
        if command_args.logistic_regression_tag:
            logistic_regression_ids = (logistic_regression_ids + \
                u.list_ids(api.list_logistic_regressions,
                           "tags__in=%s" %
                           command_args.logistic_regression_tag))
        command_args.logistic_regression_ids_ = logistic_regression_ids
    except AttributeError:
        pass

    linear_regression_ids = []
    try:
        # Parses linearregression/ids if provided.
        if command_args.linear_regressions:
            linear_regression_ids = u.read_resources( \
                command_args.linear_regressions)
        command_args.linear_regression_ids_ = linear_regression_ids
    except AttributeError:
        pass

    # Retrieve linearregression/ids if provided.
    try:
        if command_args.linear_regression_tag:
            linear_regression_ids = (linear_regression_ids + \
                u.list_ids(api.list_linear_regressions,
                           "tags__in=%s" %
                           command_args.linear_regression_tag))
        command_args.linear_regression_ids_ = linear_regression_ids
    except AttributeError:
        pass

    deepnet_ids = []
    try:
        # Parses deepnet/ids if provided.
        if command_args.deepnets:
            deepnet_ids = u.read_resources( \
                command_args.deepnets)
        command_args.deepnet_ids_ = deepnet_ids
    except AttributeError:
        pass

    # Retrieve deepnet/ids if provided.
    try:
        if command_args.deepnet_tag:
            deepnet_ids = (deepnet_ids + \
                u.list_ids(api.list_deepnets,
                           "tags__in=%s" % command_args.deepnet_tag))
        command_args.deepnet_ids_ = deepnet_ids
    except AttributeError:
        pass

    topic_model_ids = []
    try:
        # Parses topicmodel/ids if provided.
        if command_args.topic_models:
            topic_model_ids = u.read_resources(command_args.topic_models)
        command_args.topic_model_ids_ = topic_model_ids
    except AttributeError:
        pass

    # Retrieve topicmodel/ids if provided.
    try:
        if command_args.topic_model_tag:
            topic_model_ids = (
                topic_model_ids +
                u.list_ids(api.list_topic_models,
                           "tags__in=%s" % command_args.topic_model_tag))
        command_args.topic_model_ids_ = topic_model_ids
    except AttributeError:
        pass

    time_series_ids = []
    try:
        # Parses timeseries/ids if provided.
        if command_args.time_series_set:
            time_series_ids = u.read_resources(command_args.time_series)
        command_args.time_series_ids_ = time_series_ids
    except AttributeError:
        pass

    # Retrieve timeseries/ids if provided.
    try:
        if command_args.time_series_tag:
            time_series_ids = (
                time_series_ids +
                u.list_ids(api.list_time_series,
                           "tags__in=%s" % command_args.time_series_tag))
        command_args.time_series_ids_ = time_series_ids
    except AttributeError:
        pass

    pca_ids = []
    try:
        # Parses pca/ids if provided.
        if command_args.pcas:
            pca_ids = u.read_resources(command_args.pcas)
        command_args.pca_ids_ = pca_ids
    except AttributeError:
        pass

    # Retrieve pca/ids if provided.
    try:
        if command_args.pca_tag:
            pca_ids = (pca_ids + u.list_ids(
                api.pca_series, "tags__in=%s" % command_args.pca_tag))
        command_args.pca_ids_ = pca_ids
    except AttributeError:
        pass

    # Parses models list for fusions if provided.
    try:
        if command_args.fusion_models:
            fusion_models_arg = [
                model.strip() for model in command_args.fusion_models.split(
                    command_args.args_separator)
            ]
            command_args.fusion_models_ = fusion_models_arg
        else:
            command_args.fusion_models_ = []
    except AttributeError:
        pass

    # Parses models list for fusions if provided.
    if not has_value(command_args, "fusion_models_"):
        try:
            if command_args.fusion_models_file:
                fusion_models_arg = u.read_json(
                    command_args.fusion_models_file)
                command_args.fusion_models_ = fusion_models_arg
            else:
                command_args.fusion_models_ = []
        except AttributeError:
            pass

    fusion_ids = []
    try:
        # Parses fusion/ids if provided.
        if command_args.fusions:
            fusion_ids = u.read_resources(command_args.fusions)
        command_args.fusion_ids_ = fusion_ids
    except AttributeError:
        pass

    # Retrieve fusion/ids if provided.
    try:
        if command_args.fusion_tag:
            fusion_ids = (fusion_ids + u.list_ids(
                api.fusion_series, "tags__in=%s" % command_args.fusion_tag))
        command_args.fusion_ids_ = fusion_ids
    except AttributeError:
        pass

    # Parses cluster names to generate datasets if provided
    try:
        if command_args.cluster_datasets:
            cluster_datasets_arg = [
                dataset.strip()
                for dataset in command_args.cluster_datasets.split(
                    command_args.args_separator)
            ]
            command_args.cluster_datasets_ = cluster_datasets_arg
        else:
            command_args.cluster_datasets_ = []
    except AttributeError:
        pass

    # Parses cluster names to generate models if provided
    try:
        if command_args.cluster_models:
            cluster_models_arg = [
                model.strip() for model in command_args.cluster_models.split(
                    command_args.args_separator)
            ]
            command_args.cluster_models_ = cluster_models_arg
        else:
            command_args.cluster_models_ = []
    except AttributeError:
        pass

    # Parses summary_fields to exclude from the clustering algorithm
    try:
        if command_args.summary_fields:
            summary_fields_arg = [
                field.strip() for field in command_args.summary_fields.split(
                    command_args.args_separator)
            ]
            command_args.summary_fields_ = summary_fields_arg
        else:
            command_args.summary_fields_ = []
    except AttributeError:
        pass

    anomaly_ids = []
    try:
        # Parses anomaly/ids if provided.
        if command_args.anomalies:
            anomaly_ids = u.read_resources(command_args.anomalies)
        command_args.anomaly_ids_ = anomaly_ids
    except AttributeError:
        pass

    # Retrieve anomaly/ids if provided.
    try:
        if command_args.anomaly_tag:
            anomaly_ids = (anomaly_ids + u.list_ids(
                api.list_anomalies, "tags__in=%s" % command_args.anomaly_tag))
        command_args.anomaly_ids_ = anomaly_ids
    except AttributeError:
        pass

    sample_ids = []
    try:
        # Parses sample/ids if provided.
        if command_args.samples:
            sample_ids = u.read_resources(command_args.samples)
        command_args.sample_ids_ = sample_ids
    except AttributeError:
        pass

    # Retrieve sample/ids if provided.
    try:
        if command_args.sample_tag:
            sample_ids = (sample_ids + u.list_ids(
                api.list_samples, "tags__in=%s" % command_args.sample_tag))
        command_args.sample_ids_ = sample_ids
    except AttributeError:
        pass

    # Parses sample row fields
    try:
        if command_args.row_fields:
            row_fields_arg = [
                field.strip() for field in command_args.row_fields.split(
                    command_args.args_separator)
            ]
            command_args.row_fields_ = row_fields_arg
        else:
            command_args.row_fields_ = []
    except AttributeError:
        pass

    # Parses sample stat_fields
    try:
        if command_args.stat_fields:
            stat_fields_arg = [
                field.strip() for field in command_args.stat_fields.split(
                    command_args.args_separator)
            ]
            command_args.stat_fields_ = stat_fields_arg
        else:
            command_args.stat_fields_ = []
    except AttributeError:
        pass

    # if boosting arguments are used, set on boosting
    try:
        if command_args.iterations or command_args.learning_rate \
                or command_args.early_holdout:
            command_args.boosting = True
    except AttributeError:
        pass

    # Extracts the imports from the JSON metadata file
    try:
        if command_args.embedded_imports:
            command_args.embedded_imports_ = u.read_resources( \
                command_args.embedded_imports)
        else:
            command_args.embedded_imports_ = []
    except AttributeError:
        pass

    # Parses hidden_layers for deepnets.
    try:
        if command_args.hidden_layers:
            command_args.hidden_layers_ = u.read_json(
                command_args.hidden_layers)
        else:
            command_args.hidden_layers_ = []
    except AttributeError:
        pass

    # Parses operating_point for predictions.
    try:
        if command_args.operating_point:
            command_args.operating_point_ = u.read_json(
                command_args.operating_point)
        else:
            command_args.operating_point_ = []
    except AttributeError:
        pass

    # Parses the json_query
    try:
        if command_args.json_query:
            command_args.json_query_ = u.read_json(command_args.json_query)
        else:
            command_args.json_query_ = None
    except AttributeError:
        pass

    # Parses the models_file
    try:
        if command_args.models_file:
            command_args.models_file_ = u.read_json(command_args.models_file)
        else:
            command_args.models_file_ = None
    except AttributeError:
        pass

    # Parses the sql_output_fields
    try:
        if command_args.sql_output_fields:
            command_args.sql_output_fields_ = u.read_json( \
                command_args.sql_output_fields)
        else:
            command_args.sql_output_fields_ = None
    except AttributeError:
        pass

    # Parses connection info for external connectors
    try:
        if command_args.connection_json:
            command_args.connection_json_ = u.read_json(
                command_args.connection_json)
        else:
            command_args.connection_json_ = {}
    except AttributeError:
        pass

    return {"api": api, "args": command_args}
示例#9
0
文件: args.py 项目: felmarlop/bigmler
def transform_args(command_args, flags, api):
    """Transforms the formatted argument strings into structured arguments

    """
    attribute_args(command_args)

    # Parses dataset generators in json format if provided
    try:
        if command_args.new_fields:
            json_generators = u.read_json(command_args.new_fields)
            command_args.dataset_json_generators = json_generators
        else:
            command_args.dataset_json_generators = {}
    except AttributeError:
        pass

    # Parses multi-dataset attributes in json such as field maps
    try:
        if command_args.multi_dataset_attributes:
            multi_dataset_json = u.read_json(
                command_args.multi_dataset_attributes)
            command_args.multi_dataset_json = multi_dataset_json
        else:
            command_args.multi_dataset_json = {}
    except AttributeError:
        pass

    transform_dataset_options(command_args, api)

    script_ids = None
    command_args.script_ids = []
    # Parses script/id if provided.
    try:
        if command_args.scripts:
            script_ids = u.read_resources(command_args.scripts)
            if len(script_ids) == 1:
                command_args.script = script_ids[0]
            command_args.script_ids = script_ids
    except AttributeError:
        pass

    # Retrieve script/ids if provided.
    try:
        if command_args.script_tag:
            script_ids = script_ids.extend(
                u.list_ids(api.list_scripts,
                           "tags__in=%s" % command_args.script_tag))
            if len(script_ids) == 1:
                command_args.script = script_ids[0]
            command_args.script_ids = script_ids
    except AttributeError:
        pass

    # Reads a json filter if provided.
    try:
        if command_args.json_filter:
            json_filter = u.read_json_filter(command_args.json_filter)
            command_args.json_filter = json_filter
    except AttributeError:
        pass

    # Reads a lisp filter if provided.
    try:
        if command_args.lisp_filter:
            lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
            command_args.lisp_filter = lisp_filter
    except AttributeError:
        pass

    # Adds default tags unless that it is requested not to do so.
    try:
        if command_args.no_tag:
            command_args.tag.append('BigMLer')
            command_args.tag.append('BigMLer_%s' % NOW)
    except AttributeError:
        pass

    # Checks combined votes method
    try:
        if (command_args.method and command_args.method != COMBINATION_LABEL
                and not command_args.method in COMBINATION_WEIGHTS.keys()):
            command_args.method = 0
        else:
            combiner_methods = dict([[value, key]
                                     for key, value in COMBINER_MAP.items()])
            combiner_methods[COMBINATION_LABEL] = COMBINATION
            command_args.method = combiner_methods.get(command_args.method, 0)
    except AttributeError:
        pass

    # Checks missing_strategy
    try:
        if (command_args.missing_strategy
                and not (command_args.missing_strategy
                         in MISSING_STRATEGIES.keys())):
            command_args.missing_strategy = 0
        else:
            command_args.missing_strategy = MISSING_STRATEGIES.get(
                command_args.missing_strategy, 0)
    except AttributeError:
        pass

    try:
        # Old value for --prediction-info='full data' maps to 'full'
        if command_args.prediction_info == 'full data':
            print("WARNING: 'full data' is a deprecated value. Use"
                  " 'full' instead")
            command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass

    # Parses class, weight pairs for objective weight
    try:
        if command_args.objective_weights:
            objective_weights = (u.read_objective_weights(
                command_args.objective_weights))
            command_args.objective_weights_json = objective_weights
    except AttributeError:
        pass

    try:
        command_args.multi_label_fields_list = []
        if command_args.multi_label_fields is not None:
            multi_label_fields = command_args.multi_label_fields.strip()
            command_args.multi_label_fields_list = multi_label_fields.split(
                command_args.args_separator)
    except AttributeError:
        pass

    # Sets shared_flag if --shared or --unshared has been used
    command_args.shared_flag = '--shared' in flags or '--unshared' in flags

    # Set remote on if scoring a trainind dataset in bigmler anomaly
    try:
        if command_args.score:
            command_args.remote = True
            if not "--prediction-info" in flags:
                command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass

    command_args.has_supervised_ = (
        (hasattr(command_args, 'model') and command_args.model)
        or (hasattr(command_args, 'models') and command_args.models)
        or (hasattr(command_args, 'ensemble') and command_args.ensemble)
        or (hasattr(command_args, 'ensembles') and command_args.ensembles)
        or (hasattr(command_args, 'model_tag') and command_args.model_tag)
        or (hasattr(command_args, 'logistic_regression')
            and command_args.logistic_regression)
        or (hasattr(command_args, 'logistic_regressions')
            and command_args.logistic_regressions)
        or (hasattr(command_args, 'logistic_regression_tag')
            and command_args.logistic_regression_tag)
        or (hasattr(command_args, 'deepnet') and command_args.deepnet)
        or (hasattr(command_args, 'deepnets') and command_args.deepnets) or
        (hasattr(command_args, 'deepnet_tag') and command_args.deepnet_tag) or
        (hasattr(command_args, 'ensemble_tag') and command_args.ensemble_tag))

    command_args.has_models_ = (
        command_args.has_supervised_
        or (hasattr(command_args, 'cluster') and command_args.cluster)
        or (hasattr(command_args, 'clusters') and command_args.clusters)
        or (hasattr(command_args, 'anomaly') and command_args.anomaly)
        or (hasattr(command_args, 'anomalies') and command_args.anomalies)
        or (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag)
        or (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag))

    command_args.has_datasets_ = (
        (hasattr(command_args, 'dataset') and command_args.dataset)
        or (hasattr(command_args, 'datasets') and command_args.datasets)
        or (hasattr(command_args, 'dataset_ids') and command_args.dataset_ids)
        or (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag))

    command_args.has_test_datasets_ = (
        (hasattr(command_args, 'test_dataset') and command_args.test_dataset)
        or
        (hasattr(command_args, 'test_datasets') and command_args.test_datasets)
        or (hasattr(command_args, 'test_dataset_tag')
            and command_args.test_dataset_tag))

    command_args.new_dataset = (
        (hasattr(command_args, 'datasets_json') and command_args.datasets_json)
        or
        (hasattr(command_args, 'multi_dataset') and command_args.multi_dataset)
        or (hasattr(command_args, 'juxtapose') and command_args.juxtapose)
        or (hasattr(command_args, 'sql_query') and command_args.sql_query)
        or (hasattr(command_args, 'sql_output_fields')
            and command_args.sql_output_fields)
        or (hasattr(command_args, 'json_query') and command_args.json_query))
示例#10
0
def transform_args(command_args, flags, api, user_defaults):
    """Transforms the formatted argument strings into structured arguments

    """
    # Parses attributes in json format if provided
    command_args.json_args = {}

    json_attribute_options = {
        'source': command_args.source_attributes,
        'dataset': command_args.dataset_attributes,
        'model': command_args.model_attributes,
        'ensemble': command_args.ensemble_attributes,
        'evaluation': command_args.evaluation_attributes,
        'batch_prediction': command_args.batch_prediction_attributes}

    for resource_type, attributes_file in json_attribute_options.items():
        if attributes_file is not None:
            command_args.json_args[resource_type] = u.read_json(
                attributes_file)
        else:
            command_args.json_args[resource_type] = {}

    # Parses dataset generators in json format if provided
    if command_args.new_fields:
        json_generators = u.read_json(command_args.new_fields)
        command_args.dataset_json_generators = json_generators
    else:
        command_args.dataset_json_generators = {}

    # Parses multi-dataset attributes in json such as field maps
    if command_args.multi_dataset_attributes:
        multi_dataset_json = u.read_json(command_args.multi_dataset_attributes)
        command_args.multi_dataset_json= multi_dataset_json
    else:
        command_args.multi_dataset_json = {}

    dataset_ids = None
    command_args.dataset_ids = []
    # Parses dataset/id if provided.
    if command_args.datasets:
        dataset_ids = u.read_datasets(command_args.datasets)
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    test_dataset_ids = None
    command_args.test_dataset_ids = []
    # Parses dataset/id if provided.
    if command_args.test_datasets:
        test_dataset_ids = u.read_datasets(command_args.test_datasets)
        command_args.test_dataset_ids = test_dataset_ids

    # Retrieve dataset/ids if provided.
    if command_args.dataset_tag:
        dataset_ids = dataset_ids.extend(
            u.list_ids(api.list_datasets,
                       "tags__in=%s" % command_args.dataset_tag))
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless that it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append('BigMLer')
        command_args.tag.append('BigMLer_%s' % NOW)

    # Checks combined votes method
    if (command_args.method and command_args.method != COMBINATION_LABEL and
            not (command_args.method in COMBINATION_WEIGHTS.keys())):
        command_args.method = 0
    else:
        combiner_methods = dict([[value, key]
                                for key, value in COMBINER_MAP.items()])
        combiner_methods[COMBINATION_LABEL] = COMBINATION
        command_args.method = combiner_methods.get(command_args.method, 0)

    # Checks missing_strategy
    if (command_args.missing_strategy and
            not (command_args.missing_strategy in MISSING_STRATEGIES.keys())):
        command_args.missing_strategy = 0
    else:
        command_args.missing_strategy = MISSING_STRATEGIES.get(
            command_args.missing_strategy, 0)

    # Adds replacement=True if creating ensemble and nothing is specified
    if (command_args.number_of_models > 1 and
            not command_args.replacement and
            not '--no-replacement' in flags and
            not 'replacement' in user_defaults and
            not '--no-randomize' in flags and
            not 'randomize' in user_defaults and
            not '--sample-rate' in flags and
            not 'sample_rate' in user_defaults):
        command_args.replacement = True

    # Old value for --prediction-info='full data' maps to 'full'
    if command_args.prediction_info == 'full data':
        print "WARNING: 'full data' is a deprecated value. Use 'full' instead"
        command_args.prediction_info = FULL_FORMAT

    # Parses class, weight pairs for objective weight
    if command_args.objective_weights:
        objective_weights = (
            u.read_objective_weights(command_args.objective_weights))
        command_args.objective_weights_json = objective_weights

    command_args.multi_label_fields_list = []
    if command_args.multi_label_fields is not None:
        multi_label_fields = command_args.multi_label_fields.strip()
        command_args.multi_label_fields_list = multi_label_fields.split(
            command_args.args_separator)

    # Sets shared_flag if --shared or --unshared has been used
    if '--shared' in flags or '--unshared' in flags:
        command_args.shared_flag = True
    else:
        command_args.shared_flag = False
示例#11
0
def transform_args(command_args, flags, api, user_defaults):
    """Transforms the formatted argument strings into structured arguments

    """
    attribute_args(command_args)

    # Parses dataset generators in json format if provided
    if command_args.new_fields:
        json_generators = u.read_json(command_args.new_fields)
        command_args.dataset_json_generators = json_generators
    else:
        command_args.dataset_json_generators = {}

    # Parses multi-dataset attributes in json such as field maps
    if command_args.multi_dataset_attributes:
        multi_dataset_json = u.read_json(command_args.multi_dataset_attributes)
        command_args.multi_dataset_json = multi_dataset_json
    else:
        command_args.multi_dataset_json = {}

    transform_dataset_options(command_args, api)

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append('BigMLer')
        command_args.tag.append('BigMLer_%s' % NOW)

    # Checks combined votes method
    try:
        if (command_args.method and command_args.method != COMBINATION_LABEL
                and not (command_args.method in COMBINATION_WEIGHTS.keys())):
            command_args.method = 0
        else:
            combiner_methods = dict(
                [[value, key] for key, value in COMBINER_MAP.items()])
            combiner_methods[COMBINATION_LABEL] = COMBINATION
            command_args.method = combiner_methods.get(command_args.method, 0)
    except AttributeError:
        pass

    # Checks missing_strategy
    try:
        if (command_args.missing_strategy and
                not (command_args.missing_strategy in
                     MISSING_STRATEGIES.keys())):
            command_args.missing_strategy = 0
        else:
            command_args.missing_strategy = MISSING_STRATEGIES.get(
                command_args.missing_strategy, 0)
    except AttributeError:
        pass

    # Adds replacement=True if creating ensemble and nothing is specified
    try:
        if (command_args.number_of_models > 1 and
                not command_args.replacement and
                not '--no-replacement' in flags and
                not 'replacement' in user_defaults and
                not '--no-randomize' in flags and
                not 'randomize' in user_defaults and
                not '--sample-rate' in flags and
                not 'sample_rate' in user_defaults):
            command_args.replacement = True
    except AttributeError:
        pass
    try:
        # Old value for --prediction-info='full data' maps to 'full'
        if command_args.prediction_info == 'full data':
            print ("WARNING: 'full data' is a deprecated value. Use"
                   " 'full' instead")
            command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass

    # Parses class, weight pairs for objective weight
    try:
        if command_args.objective_weights:
            objective_weights = (
                u.read_objective_weights(command_args.objective_weights))
            command_args.objective_weights_json = objective_weights
    except AttributeError:
        pass

    try:
        command_args.multi_label_fields_list = []
        if command_args.multi_label_fields is not None:
            multi_label_fields = command_args.multi_label_fields.strip()
            command_args.multi_label_fields_list = multi_label_fields.split(
                command_args.args_separator)
    except AttributeError:
        pass

    # Sets shared_flag if --shared or --unshared has been used
    if '--shared' in flags or '--unshared' in flags:
        command_args.shared_flag = True
    else:
        command_args.shared_flag = False


    # Set remote on if scoring a trainind dataset in bigmler anomaly
    try:
        if command_args.score:
            command_args.remote = True
            if not "--prediction-info" in flags:
                command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass


    command_args.has_models_ = (
        (hasattr(command_args, 'model') and command_args.model) or
        (hasattr(command_args, 'models') and command_args.models) or
        (hasattr(command_args, 'ensemble') and command_args.ensemble) or
        (hasattr(command_args, 'ensembles') and command_args.ensembles) or
        (hasattr(command_args, 'cluster') and command_args.cluster) or
        (hasattr(command_args, 'clusters') and command_args.clusters) or
        (hasattr(command_args, 'model_tag') and command_args.model_tag) or
        (hasattr(command_args, 'anomaly') and command_args.anomaly) or
        (hasattr(command_args, 'anomalies') and command_args.anomalies) or
        (hasattr(command_args, 'ensemble_tag')
         and command_args.ensemble_tag) or
        (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag) or
        (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag))

    command_args.has_datasets_ = (
        (hasattr(command_args, 'dataset') and command_args.dataset) or
        (hasattr(command_args, 'datasets') and command_args.datasets) or
        (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag))


    command_args.has_test_datasets_ = (
        (hasattr(command_args, 'test_dataset') and
         command_args.test_dataset) or
        (hasattr(command_args, 'test_datasets') and
         command_args.test_datasets) or
        (hasattr(command_args, 'test_dataset_tag') and
         command_args.test_dataset_tag))
示例#12
0
def transform_args(command_args, flags, api, user_defaults):
    """Transforms the formatted argument strings into structured arguments

    """
    # Parses attributes in json format if provided
    command_args.json_args = {}

    json_attribute_options = {
        'source': command_args.source_attributes,
        'dataset': command_args.dataset_attributes,
        'model': command_args.model_attributes,
        'ensemble': command_args.ensemble_attributes,
        'evaluation': command_args.evaluation_attributes,
        'batch_prediction': command_args.batch_prediction_attributes
    }

    for resource_type, attributes_file in json_attribute_options.items():
        if attributes_file is not None:
            command_args.json_args[resource_type] = u.read_json(
                attributes_file)
        else:
            command_args.json_args[resource_type] = {}

    # Parses dataset generators in json format if provided
    if command_args.new_fields:
        json_generators = u.read_json(command_args.new_fields)
        command_args.dataset_json_generators = json_generators
    else:
        command_args.dataset_json_generators = {}

    # Parses multi-dataset attributes in json such as field maps
    if command_args.multi_dataset_attributes:
        multi_dataset_json = u.read_json(command_args.multi_dataset_attributes)
        command_args.multi_dataset_json = multi_dataset_json
    else:
        command_args.multi_dataset_json = {}

    dataset_ids = None
    command_args.dataset_ids = []
    # Parses dataset/id if provided.
    if command_args.datasets:
        dataset_ids = u.read_datasets(command_args.datasets)
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    # Retrieve dataset/ids if provided.
    if command_args.dataset_tag:
        dataset_ids = dataset_ids.extend(
            u.list_ids(api.list_datasets,
                       "tags__in=%s" % command_args.dataset_tag))
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless that it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append('BigMLer')
        command_args.tag.append('BigMLer_%s' % NOW)

    # Checks combined votes method
    if (command_args.method and command_args.method != COMBINATION_LABEL
            and not (command_args.method in COMBINATION_WEIGHTS.keys())):
        command_args.method = 0
    else:
        combiner_methods = dict([[value, key]
                                 for key, value in COMBINER_MAP.items()])
        combiner_methods[COMBINATION_LABEL] = COMBINATION
        command_args.method = combiner_methods.get(command_args.method, 0)

    # Checks missing_strategy
    if (command_args.missing_strategy and
            not (command_args.missing_strategy in MISSING_STRATEGIES.keys())):
        command_args.missing_strategy = 0
    else:
        command_args.missing_strategy = MISSING_STRATEGIES.get(
            command_args.missing_strategy, 0)

    # Adds replacement=True if creating ensemble and nothing is specified
    if (command_args.number_of_models > 1 and not command_args.replacement
            and not '--no-replacement' in flags
            and not 'replacement' in user_defaults
            and not '--no-randomize' in flags
            and not 'randomize' in user_defaults
            and not '--sample-rate' in flags
            and not 'sample_rate' in user_defaults):
        command_args.replacement = True

    # Old value for --prediction-info='full data' maps to 'full'
    if command_args.prediction_info == 'full data':
        print "WARNING: 'full data' is a deprecated value. Use 'full' instead"
        command_args.prediction_info = FULL_FORMAT

    # Parses class, weight pairs for objective weight
    if command_args.objective_weights:
        objective_weights = (u.read_objective_weights(
            command_args.objective_weights))
        command_args.objective_weights_json = objective_weights

    command_args.multi_label_fields_list = []
    if command_args.multi_label_fields is not None:
        multi_label_fields = command_args.multi_label_fields.strip()
        command_args.multi_label_fields_list = multi_label_fields.split(',')
示例#13
0
文件: args.py 项目: mmerce/bigmler
def transform_args(command_args, flags, api):
    """Transforms the formatted argument strings into structured arguments

    """
    attribute_args(command_args)

    # Parses dataset generators in json format if provided
    try:
        if command_args.new_fields:
            json_generators = u.read_json(command_args.new_fields)
            command_args.dataset_json_generators = json_generators
        else:
            command_args.dataset_json_generators = {}
    except AttributeError:
        pass

    # Parses multi-dataset attributes in json such as field maps
    try:
        if command_args.multi_dataset_attributes:
            multi_dataset_json = u.read_json(
                command_args.multi_dataset_attributes)
            command_args.multi_dataset_json = multi_dataset_json
        else:
            command_args.multi_dataset_json = {}
    except AttributeError:
        pass

    transform_dataset_options(command_args, api)

    script_ids = None
    command_args.script_ids = []
    # Parses script/id if provided.
    try:
        if command_args.scripts:
            script_ids = u.read_resources(command_args.scripts)
            if len(script_ids) == 1:
                command_args.script = script_ids[0]
            command_args.script_ids = script_ids
    except AttributeError:
        pass

    # Retrieve script/ids if provided.
    try:
        if command_args.script_tag:
            script_ids = script_ids.extend(
                u.list_ids(api.list_scripts,
                           "tags__in=%s" % command_args.script_tag))
            if len(script_ids) == 1:
                command_args.script = script_ids[0]
            command_args.script_ids = script_ids
    except AttributeError:
        pass

    # Reads a json filter if provided.
    try:
        if command_args.json_filter:
            json_filter = u.read_json_filter(command_args.json_filter)
            command_args.json_filter = json_filter
    except AttributeError:
        pass

    # Reads a lisp filter if provided.
    try:
        if command_args.lisp_filter:
            lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
            command_args.lisp_filter = lisp_filter
    except AttributeError:
        pass

    # Adds default tags unless that it is requested not to do so.
    try:
        if command_args.no_tag:
            command_args.tag.append('BigMLer')
            command_args.tag.append('BigMLer_%s' % NOW)
    except AttributeError:
        pass

    # Checks combined votes method
    try:
        if (command_args.method and command_args.method != COMBINATION_LABEL
                and not command_args.method in COMBINATION_WEIGHTS.keys()):
            command_args.method = 0
        else:
            combiner_methods = dict(
                [[value, key] for key, value in COMBINER_MAP.items()])
            combiner_methods[COMBINATION_LABEL] = COMBINATION
            command_args.method = combiner_methods.get(command_args.method, 0)
    except AttributeError:
        pass

    # Checks missing_strategy
    try:
        if (command_args.missing_strategy and
                not (command_args.missing_strategy in
                     MISSING_STRATEGIES.keys())):
            command_args.missing_strategy = 0
        else:
            command_args.missing_strategy = MISSING_STRATEGIES.get(
                command_args.missing_strategy, 0)
    except AttributeError:
        pass

    try:
        # Old value for --prediction-info='full data' maps to 'full'
        if command_args.prediction_info == 'full data':
            print ("WARNING: 'full data' is a deprecated value. Use"
                   " 'full' instead")
            command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass

    # Parses class, weight pairs for objective weight
    try:
        if command_args.objective_weights:
            objective_weights = (
                u.read_objective_weights(command_args.objective_weights))
            command_args.objective_weights_json = objective_weights
    except AttributeError:
        pass

    try:
        command_args.multi_label_fields_list = []
        if command_args.multi_label_fields is not None:
            multi_label_fields = command_args.multi_label_fields.strip()
            command_args.multi_label_fields_list = multi_label_fields.split(
                command_args.args_separator)
    except AttributeError:
        pass

    # Sets shared_flag if --shared or --unshared has been used
    command_args.shared_flag = '--shared' in flags or '--unshared' in flags

    # Set remote on if scoring a trainind dataset in bigmler anomaly
    try:
        if command_args.score:
            command_args.remote = True
            if not "--prediction-info" in flags:
                command_args.prediction_info = FULL_FORMAT
    except AttributeError:
        pass

    command_args.has_supervised_ = (
        (hasattr(command_args, 'model') and command_args.model) or
        (hasattr(command_args, 'models') and command_args.models) or
        (hasattr(command_args, 'ensemble') and command_args.ensemble) or
        (hasattr(command_args, 'ensembles') and command_args.ensembles) or
        (hasattr(command_args, 'model_tag') and command_args.model_tag) or
        (hasattr(command_args, 'logistic_regression') and
         command_args.logistic_regression) or
        (hasattr(command_args, 'logistic_regressions') and
         command_args.logistic_regressions) or
        (hasattr(command_args, 'logistic_regression_tag') and
         command_args.logistic_regression_tag) or
        (hasattr(command_args, 'deepnet') and
         command_args.deepnet) or
        (hasattr(command_args, 'deepnets') and
         command_args.deepnets) or
        (hasattr(command_args, 'deepnet_tag') and
         command_args.deepnet_tag) or
        (hasattr(command_args, 'ensemble_tag')
         and command_args.ensemble_tag))

    command_args.has_models_ = (
        command_args.has_supervised_ or
        (hasattr(command_args, 'cluster') and command_args.cluster) or
        (hasattr(command_args, 'clusters') and command_args.clusters) or
        (hasattr(command_args, 'anomaly') and command_args.anomaly) or
        (hasattr(command_args, 'anomalies') and command_args.anomalies) or
        (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag) or
        (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag))

    command_args.has_datasets_ = (
        (hasattr(command_args, 'dataset') and command_args.dataset) or
        (hasattr(command_args, 'datasets') and command_args.datasets) or
        (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag))


    command_args.has_test_datasets_ = (
        (hasattr(command_args, 'test_dataset') and
         command_args.test_dataset) or
        (hasattr(command_args, 'test_datasets') and
         command_args.test_datasets) or
        (hasattr(command_args, 'test_dataset_tag') and
         command_args.test_dataset_tag))
示例#14
0
文件: args.py 项目: mmerce/bigmler
def get_output_args(api, command_args, resume):
    """Returns the output args needed for the main bigmler computation process

    """
    try:
        if command_args.train_stdin:
            if command_args.test_stdin:
                sys.exit("The standard input can't be used both for training "
                         "and testing. Choose one of them")
            command_args.training_set = StringIO(sys.stdin.read())
        elif command_args.test_stdin:
            command_args.test_set = StringIO(sys.stdin.read())
    except AttributeError:
        pass

    try:
        if command_args.objective_field:
            objective = command_args.objective_field
            try:
                command_args.objective_field = int(objective)
            except ValueError:
                if not command_args.train_header:
                    sys.exit("The %s has been set as objective field but"
                             " the file has not been marked as containing"
                             " headers.\nPlease set the --train-header flag if"
                             " the file has headers or use a column number"
                             " to set the objective field." % objective)
    except AttributeError:
        pass

    command_args.resume_ = resume
    command_args.predictions = command_args.output

    # Reads description if provided.
    try:
        if command_args.description:
            description_arg = u.read_description(command_args.description)
            command_args.description_ = description_arg
        else:
            command_args.description_ = DEFAULT_DESCRIPTION
    except AttributeError:
        pass

    # Parses fields if provided.
    try:
        if command_args.field_attributes:
            field_attributes_arg = (
                u.read_field_attributes(command_args.field_attributes))
            command_args.field_attributes_ = field_attributes_arg
        else:
            command_args.field_attributes_ = []
    except AttributeError:
        pass
    try:
        if command_args.test_field_attributes:
            field_attributes_arg = (
                u.read_field_attributes(command_args.test_field_attributes))
            command_args.test_field_attributes_ = field_attributes_arg
        else:
            command_args.test_field_attributes_ = []
    except AttributeError:
        pass

    # Parses types if provided.
    try:
        if command_args.types:
            types_arg = u.read_types(command_args.types)
            command_args.types_ = types_arg
        else:
            command_args.types_ = None
        if command_args.test_types:
            types_arg = u.read_types(command_args.test_types)
            command_args.test_types_ = types_arg
        else:
            command_args.test_types_ = None
    except AttributeError:
        pass


    # Parses dataset fields if provided.
    try:
        if command_args.dataset_fields:
            dataset_fields_arg = [
                field.strip() for field in command_args.dataset_fields.split(
                    command_args.args_separator)]
            command_args.dataset_fields_ = dataset_fields_arg
        else:
            command_args.dataset_fields_ = []
    except AttributeError:
        pass

    # Parses model input fields if provided.
    try:
        if command_args.model_fields:
            model_fields_arg = [
                field.strip() for field in command_args.model_fields.split(
                    command_args.args_separator)]
            command_args.model_fields_ = model_fields_arg
        else:
            command_args.model_fields_ = []
    except AttributeError:
        pass

    # Parses cluster input fields if provided.
    try:
        if command_args.cluster_fields:
            cluster_fields_arg = [
                field.strip() for field in command_args.cluster_fields.split(
                    command_args.args_separator)]
            command_args.cluster_fields_ = cluster_fields_arg
        else:
            command_args.cluster_fields_ = []
    except AttributeError:
        pass


    # Parses association input fields if provided.
    try:
        if command_args.association_fields:
            association_fields_arg = [
                field.strip() for field in \
                command_args.association_fields.split( \
                command_args.args_separator)]
            command_args.association_fields_ = association_fields_arg
        else:
            command_args.association_fields_ = []
    except AttributeError:
        pass

    # Parses anomaly input fields if provided.
    try:
        if command_args.anomaly_fields:
            anomaly_fields_arg = [
                field.strip() for field in command_args.anomaly_fields.split(
                    command_args.args_separator)]
            command_args.anomaly_fields_ = anomaly_fields_arg
        else:
            command_args.anomaly_fields_ = []
    except AttributeError:
        pass

    # Parses logistic regression input fields if provided.
    try:
        if command_args.logistic_fields:
            logistic_fields_arg = [
                field.strip() for field in command_args.logistic_fields.split(
                    command_args.args_separator)]
            command_args.logistic_fields_ = logistic_fields_arg
        else:
            command_args.logistic_fields_ = []
    except AttributeError:
        pass


    # Parses deepnet input fields if provided.
    try:
        if command_args.deepnet_fields:
            deepnet_fields_arg = [
                field.strip() for field in command_args.deepnet_fields.split(
                    command_args.args_separator)]
            command_args.deepnet_fields_ = deepnet_fields_arg
        else:
            command_args.deepnet_fields_ = []
    except AttributeError:
        pass

    # Parses topic model fields if provided.
    try:
        if command_args.topic_fields:
            topic_fields_arg = [
                field.strip() for field in command_args.topic_fields.split(
                    command_args.args_separator)]
            command_args.topic_model_fields_ = topic_fields_arg
        else:
            command_args.topic_model_fields_ = []
    except AttributeError:
        pass

    # Parses field_codings for deepnet
    try:
        if command_args.field_codings:
            command_args.field_codings_ = u.read_json(
                command_args.field_codings)
        else:
            command_args.field_codings_ = []
    except AttributeError:
        pass

    # Parses imports for scripts and libraries.
    try:
        if command_args.imports:
            imports_arg = [
                field.strip() for field in command_args.imports.split(
                    command_args.args_separator)]
            command_args.imports_ = imports_arg
        else:
            command_args.imports_ = []
    except AttributeError:
        pass

    # Parses objective fields for time-series.
    try:
        if command_args.objectives:
            objective_fields_arg = [
                field.strip() for field in command_args.objectives.split(
                    command_args.args_separator)]
            command_args.objective_fields_ = objective_fields_arg
        else:
            command_args.objective_fields_ = []
    except AttributeError:
        pass

    # Parses range.
    try:
        if command_args.range:
            range_arg = [
                value.strip() for value in command_args.range.split(
                    command_args.args_separator)]
            command_args.range_ = range_arg
        else:
            command_args.range_ = []
    except AttributeError:
        pass

    # Parses parameters for scripts.
    try:
        if command_args.declare_inputs:
            command_args.parameters_ = u.read_json(command_args.declare_inputs)
        else:
            command_args.parameters_ = []
    except AttributeError:
        pass

    # Parses creation_defaults for executions.
    try:
        if command_args.creation_defaults:
            command_args.creation_defaults_ = u.read_json(
                command_args.creation_defaults)
        else:
            command_args.creation_defaults_ = {}
    except AttributeError:
        pass

    # Parses arguments for executions.
    try:
        if command_args.inputs:
            command_args.arguments_ = u.read_json(command_args.inputs)
        else:
            command_args.arguments_ = []
    except AttributeError:
        pass

    # Parses input maps for executions.
    try:
        if command_args.input_maps:
            command_args.input_maps_ = u.read_json(command_args.input_maps)
        else:
            command_args.input_maps_ = []
    except AttributeError:
        pass

    # Parses outputs for executions.
    try:
        if command_args.outputs:
            command_args.outputs_ = u.read_json(command_args.outputs)
        else:
            command_args.outputs_ = []
    except AttributeError:
        pass

    # Parses outputs for scripts.
    try:
        if command_args.declare_outputs:
            command_args.declare_outputs_ = \
                u.read_json(command_args.declare_outputs)
        else:
            command_args.declare_outputs_ = []
    except AttributeError:
        pass

    model_ids = []
    try:
        # Parses model/ids if provided.
        if command_args.models:
            model_ids = u.read_resources(command_args.models)
        command_args.model_ids_ = model_ids
    except AttributeError:
        pass

    # Retrieve model/ids if provided.
    try:
        if command_args.model_tag:
            model_ids = (model_ids +
                         u.list_ids(api.list_models,
                                    "tags__in=%s" % command_args.model_tag))
        command_args.model_ids_ = model_ids
    except AttributeError:
        pass

    # Reads votes files in the provided directories.
    try:
        if command_args.votes_dirs:
            dirs = [
                directory.strip() for directory in
                command_args.votes_dirs.split(
                    command_args.args_separator)]
            votes_path = os.path.dirname(command_args.predictions)
            votes_files = u.read_votes_files(dirs, votes_path)
            command_args.votes_files_ = votes_files
        else:
            command_args.votes_files_ = []
    except AttributeError:
        pass

    # Parses fields map if provided.
    try:
        if command_args.fields_map:
            fields_map_arg = u.read_fields_map(command_args.fields_map)
            command_args.fields_map_ = fields_map_arg
        else:
            command_args.fields_map_ = None
    except AttributeError:
        pass

    cluster_ids = []
    try:
        # Parses cluster/ids if provided.
        if command_args.clusters:
            cluster_ids = u.read_resources(command_args.clusters)
        command_args.cluster_ids_ = cluster_ids
    except AttributeError:
        pass

    # Retrieve cluster/ids if provided.
    try:
        if command_args.cluster_tag:
            cluster_ids = (cluster_ids +
                           u.list_ids(api.list_clusters,
                                      "tags__in=%s" %
                                      command_args.cluster_tag))
        command_args.cluster_ids_ = cluster_ids
    except AttributeError:
        pass

    association_ids = []
    try:
        # Parses association/ids if provided.
        if command_args.associations:
            association_ids = u.read_resources(command_args.associations)
        command_args.association_ids_ = association_ids
    except AttributeError:
        pass

    # Retrieve association/ids if provided.
    try:
        if command_args.association_tag:
            association_ids = (association_ids +
                               u.list_ids(api.list_associations,
                                          "tags__in=%s" %
                                          command_args.association_tag))
        command_args.association_ids_ = association_ids
    except AttributeError:
        pass

    logistic_regression_ids = []
    try:
        # Parses logisticregression/ids if provided.
        if command_args.logistic_regressions:
            logistic_regression_ids = u.read_resources( \
                command_args.logistic_regressions)
        command_args.logistic_regression_ids_ = logistic_regression_ids
    except AttributeError:
        pass

    # Retrieve logsticregression/ids if provided.
    try:
        if command_args.logistic_regression_tag:
            logistic_regression_ids = (logistic_regression_ids + \
                u.list_ids(api.list_logistic_regressions,
                           "tags__in=%s" %
                           command_args.logistic_regression_tag))
        command_args.logistic_regression_ids_ = logistic_regression_ids
    except AttributeError:
        pass

    deepnet_ids = []
    try:
        # Parses deepnet/ids if provided.
        if command_args.deepnets:
            deepnet_ids = u.read_resources( \
                command_args.deepnets)
        command_args.deepnet_ids_ = deepnet_ids
    except AttributeError:
        pass

    # Retrieve deepnet/ids if provided.
    try:
        if command_args.deepnet_tag:
            deepnet_regression_ids = (deepnet_ids + \
                u.list_ids(api.list_deepnets,
                           "tags__in=%s" % command_args.deepnet_tag))
        command_args.deepnet_ids_ = deepnet_ids
    except AttributeError:
        pass

    topic_model_ids = []
    try:
        # Parses topicmodel/ids if provided.
        if command_args.topic_models:
            topic_model_ids = u.read_resources(command_args.topic_models)
        command_args.topic_model_ids_ = topic_model_ids
    except AttributeError:
        pass

    # Retrieve topicmodel/ids if provided.
    try:
        if command_args.topic_model_tag:
            topic_model_ids = (topic_model_ids +
                               u.list_ids(api.list_topic_models,
                                          "tags__in=%s" %
                                          command_args.topic_model_tag))
        command_args.topic_model_ids_ = topic_model_ids
    except AttributeError:
        pass


    time_series_ids = []
    try:
        # Parses timeseries/ids if provided.
        if command_args.time_series_set:
            time_series_ids = u.read_resources(command_args.time_series)
        command_args.time_series_ids_ = time_series_ids
    except AttributeError:
        pass

    # Retrieve timeseries/ids if provided.
    try:
        if command_args.time_series_tag:
            time_series_ids = (time_series_ids +
                               u.list_ids(api.list_time_series,
                                          "tags__in=%s" %
                                          command_args.time_series_tag))
        command_args.time_series_ids_ = time_series_ids
    except AttributeError:
        pass

    # Parses cluster names to generate datasets if provided
    try:
        if command_args.cluster_datasets:
            cluster_datasets_arg = [
                dataset.strip() for dataset in
                command_args.cluster_datasets.split(
                    command_args.args_separator)]
            command_args.cluster_datasets_ = cluster_datasets_arg
        else:
            command_args.cluster_datasets_ = []
    except AttributeError:
        pass

    # Parses cluster names to generate models if provided
    try:
        if command_args.cluster_models:
            cluster_models_arg = [
                model.strip() for model in
                command_args.cluster_models.split(
                    command_args.args_separator)]
            command_args.cluster_models_ = cluster_models_arg
        else:
            command_args.cluster_models_ = []
    except AttributeError:
        pass

    # Parses summary_fields to exclude from the clustering algorithm
    try:
        if command_args.summary_fields:
            summary_fields_arg = [
                field.strip() for field in
                command_args.summary_fields.split(
                    command_args.args_separator)]
            command_args.summary_fields_ = summary_fields_arg
        else:
            command_args.summary_fields_ = []
    except AttributeError:
        pass

    anomaly_ids = []
    try:
        # Parses anomaly/ids if provided.
        if command_args.anomalies:
            anomaly_ids = u.read_resources(command_args.anomalies)
        command_args.anomaly_ids_ = anomaly_ids
    except AttributeError:
        pass

    # Retrieve anomaly/ids if provided.
    try:
        if command_args.anomaly_tag:
            anomaly_ids = (anomaly_ids +
                           u.list_ids(api.list_anomalies,
                                      "tags__in=%s" %
                                      command_args.anomaly_tag))
        command_args.anomaly_ids_ = anomaly_ids
    except AttributeError:
        pass

    sample_ids = []
    try:
        # Parses sample/ids if provided.
        if command_args.samples:
            sample_ids = u.read_resources(command_args.samples)
        command_args.sample_ids_ = sample_ids
    except AttributeError:
        pass

    # Retrieve sample/ids if provided.
    try:
        if command_args.sample_tag:
            sample_ids = (
                sample_ids + u.list_ids(api.list_samples,
                                        "tags__in=%s" %
                                        command_args.sample_tag))
        command_args.sample_ids_ = sample_ids
    except AttributeError:
        pass

    # Parses sample row fields
    try:
        if command_args.row_fields:
            row_fields_arg = [field.strip() for field in
                              command_args.row_fields.split(
                                  command_args.args_separator)]
            command_args.row_fields_ = row_fields_arg
        else:
            command_args.row_fields_ = []
    except AttributeError:
        pass

    # Parses sample stat_fields
    try:
        if command_args.stat_fields:
            stat_fields_arg = [field.strip() for field in
                               command_args.stat_fields.split(
                                   command_args.args_separator)]
            command_args.stat_fields_ = stat_fields_arg
        else:
            command_args.stat_fields_ = []
    except AttributeError:
        pass

    # if boosting arguments are used, set on boosting
    try:
        if command_args.iterations or command_args.learning_rate \
                or command_args.early_holdout:
            command_args.boosting = True
    except AttributeError:
        pass

    # Extracts the imports from the JSON metadata file
    try:
        if command_args.embedded_imports:
            command_args.embedded_imports_ = u.read_resources( \
                command_args.embedded_imports)
        else:
            command_args.embedded_imports_ = []
    except AttributeError:
        pass

    # Parses hidden_layers for deepnets.
    try:
        if command_args.hidden_layers:
            command_args.hidden_layers_ = u.read_json(
                command_args.hidden_layers)
        else:
            command_args.hidden_layers_ = []
    except AttributeError:
        pass

    # Parses operating_point for predictions.
    try:
        if command_args.operating_point:
            command_args.operating_point_ = u.read_json(
                command_args.operating_point)
        else:
            command_args.operating_point_ = []
    except AttributeError:
        pass

    return {"api": api, "args": command_args}
示例#15
0
文件: args.py 项目: mamack/bigmler
def get_output_args(api, command_args, resume):
    """Returns the output args needed for the main bigmler computation process

    """
    try:
        if command_args.train_stdin:
            if command_args.test_stdin:
                sys.exit("The standard input can't be used both for training "
                         "and testing. Choose one of them")
            command_args.training_set = StringIO(sys.stdin.read())
        elif command_args.test_stdin:
            command_args.test_set = StringIO(sys.stdin.read())
    except AttributeError:
        pass

    try:
        if command_args.objective_field:
            objective = command_args.objective_field
            try:
                command_args.objective_field = int(objective)
            except ValueError:
                if not command_args.train_header:
                    sys.exit("The %s has been set as objective field but"
                             " the file has not been marked as containing"
                             " headers.\nPlease set the --train-header flag if"
                             " the file has headers or use a column number"
                             " to set the objective field." % objective)
    except AttributeError:
        pass

    command_args.resume_ = resume

    # Reads description if provided.
    try:
        if command_args.description:
            description_arg = u.read_description(command_args.description)
            command_args.description_ = description_arg
        else:
            command_args.description_ = DEFAULT_DESCRIPTION
    except AttributeError:
        pass

    # Parses fields if provided.
    try:
        if command_args.field_attributes:
            field_attributes_arg = (u.read_field_attributes(
                command_args.field_attributes))
            command_args.field_attributes_ = field_attributes_arg
        else:
            command_args.field_attributes_ = []
    except AttributeError:
        pass
    try:
        if command_args.test_field_attributes:
            field_attributes_arg = (u.read_field_attributes(
                command_args.test_field_attributes))
            command_args.test_field_attributes_ = field_attributes_arg
        else:
            command_args.test_field_attributes_ = []
    except AttributeError:
        pass

    # Parses types if provided.
    try:
        if command_args.types:
            types_arg = u.read_types(command_args.types)
            command_args.types_ = types_arg
        else:
            command_args.types_ = None
        if command_args.test_types:
            types_arg = u.read_types(command_args.test_types)
            command_args.test_types_ = types_arg
        else:
            command_args.test_types_ = None
    except AttributeError:
        pass

    # Parses dataset fields if provided.
    try:
        if command_args.dataset_fields:
            dataset_fields_arg = [
                field.strip() for field in command_args.dataset_fields.split(
                    command_args.args_separator)
            ]
            command_args.dataset_fields_ = dataset_fields_arg
        else:
            command_args.dataset_fields_ = []
    except AttributeError:
        pass

    # Parses model input fields if provided.
    try:
        if command_args.model_fields:
            model_fields_arg = [
                field.strip() for field in command_args.model_fields.split(
                    command_args.args_separator)
            ]
            command_args.model_fields_ = model_fields_arg
        else:
            command_args.model_fields_ = []
    except AttributeError:
        pass

    # Parses cluster input fields if provided.
    try:
        if command_args.cluster_fields:
            cluster_fields_arg = [
                field.strip() for field in command_args.cluster_fields.split(
                    command_args.args_separator)
            ]
            command_args.cluster_fields_ = cluster_fields_arg
        else:
            command_args.cluster_fields_ = []
    except AttributeError:
        pass

    # Parses association input fields if provided.
    try:
        if command_args.association_fields:
            association_fields_arg = [
                field.strip() for field in \
                command_args.association_fields.split( \
                command_args.args_separator)]
            command_args.association_fields_ = association_fields_arg
        else:
            command_args.association_fields_ = []
    except AttributeError:
        pass

    # Parses anomaly input fields if provided.
    try:
        if command_args.anomaly_fields:
            anomaly_fields_arg = [
                field.strip() for field in command_args.anomaly_fields.split(
                    command_args.args_separator)
            ]
            command_args.anomaly_fields_ = anomaly_fields_arg
        else:
            command_args.anomaly_fields_ = []
    except AttributeError:
        pass

    # Parses logistic regression input fields if provided.
    try:
        if command_args.logistic_fields:
            logistic_fields_arg = [
                field.strip() for field in command_args.logistic_fields.split(
                    command_args.args_separator)
            ]
            command_args.logistic_fields_ = logistic_fields_arg
        else:
            command_args.logistic_fields_ = []
    except AttributeError:
        pass

    # Parses field_codings for logistic regressions
    try:
        if command_args.field_codings:
            command_args.field_codings_ = u.read_json(
                command_args.field_codings)
        else:
            command_args.field_codings_ = []
    except AttributeError:
        pass

    # Parses imports for scripts and libraries.
    try:
        if command_args.imports:
            imports_arg = [
                field.strip() for field in command_args.imports.split(
                    command_args.args_separator)
            ]
            command_args.imports_ = imports_arg
        else:
            command_args.imports_ = []
    except AttributeError:
        pass

    # Parses parameters for scripts.
    try:
        if command_args.declare_inputs:
            command_args.parameters_ = u.read_json(command_args.declare_inputs)
        else:
            command_args.parameters_ = []
    except AttributeError:
        pass

    # Parses creation_defaults for executions.
    try:
        if command_args.creation_defaults:
            command_args.creation_defaults_ = u.read_json(
                command_args.creation_defaults)
        else:
            command_args.creation_defaults_ = {}
    except AttributeError:
        pass

    # Parses arguments for executions.
    try:
        if command_args.inputs:
            command_args.arguments_ = u.read_json(command_args.inputs)
        else:
            command_args.arguments_ = []
    except AttributeError:
        pass

    # Parses input maps for executions.
    try:
        if command_args.input_maps:
            command_args.input_maps_ = u.read_json(command_args.input_maps)
        else:
            command_args.input_maps_ = []
    except AttributeError:
        pass

    # Parses outputs for executions.
    try:
        if command_args.outputs:
            command_args.outputs_ = u.read_json(command_args.outputs)
        else:
            command_args.outputs_ = []
    except AttributeError:
        pass

    # Parses outputs for scripts.
    try:
        if command_args.declare_outputs:
            command_args.declare_outputs_ = \
                u.read_json(command_args.declare_outputs)
        else:
            command_args.declare_outputs_ = []
    except AttributeError:
        pass

    model_ids = []
    try:
        # Parses model/ids if provided.
        if command_args.models:
            model_ids = u.read_resources(command_args.models)
        command_args.model_ids_ = model_ids
    except AttributeError:
        pass

    # Retrieve model/ids if provided.
    try:
        if command_args.model_tag:
            model_ids = (model_ids + u.list_ids(
                api.list_models, "tags__in=%s" % command_args.model_tag))
        command_args.model_ids_ = model_ids
    except AttributeError:
        pass

    # Reads votes files in the provided directories.
    try:
        if command_args.votes_dirs:
            dirs = [
                directory.strip() for directory in
                command_args.votes_dirs.split(command_args.args_separator)
            ]
            votes_path = os.path.dirname(command_args.predictions)
            votes_files = u.read_votes_files(dirs, votes_path)
            command_args.votes_files_ = votes_files
        else:
            command_args.votes_files_ = []
    except AttributeError:
        pass

    # Parses fields map if provided.
    try:
        if command_args.fields_map:
            fields_map_arg = u.read_fields_map(command_args.fields_map)
            command_args.fields_map_ = fields_map_arg
        else:
            command_args.fields_map_ = None
    except AttributeError:
        pass

    cluster_ids = []
    try:
        # Parses cluster/ids if provided.
        if command_args.clusters:
            cluster_ids = u.read_resources(command_args.clusters)
        command_args.cluster_ids_ = cluster_ids
    except AttributeError:
        pass

    # Retrieve cluster/ids if provided.
    try:
        if command_args.cluster_tag:
            cluster_ids = (cluster_ids + u.list_ids(
                api.list_clusters, "tags__in=%s" % command_args.cluster_tag))
        command_args.cluster_ids_ = cluster_ids
    except AttributeError:
        pass

    association_ids = []
    try:
        # Parses association/ids if provided.
        if command_args.associations:
            association_ids = u.read_resources(command_args.associations)
        command_args.association_ids_ = association_ids
    except AttributeError:
        pass

    # Retrieve cluster/ids if provided.
    try:
        if command_args.association_tag:
            association_ids = (
                association_ids +
                u.list_ids(api.list_associations,
                           "tags__in=%s" % command_args.association_tag))
        command_args.association_ids_ = association_ids
    except AttributeError:
        pass

    logistic_regression_ids = []
    try:
        # Parses logisticregression/ids if provided.
        if command_args.logistic_regressions:
            logistic_regression_ids = u.read_resources( \
                command_args.logistic_regressions)
        command_args.logistic_regression_ids_ = logistic_regression_ids
    except AttributeError:
        pass

    # Retrieve logisticregression/ids if provided.
    try:
        if command_args.logistic_tag:
            logistic_regression_ids = (
                logistic_ids +
                u.list_ids(api.list_logistic_regressions,
                           "tags__in=%s" % command_args.logistic_tag))
        command_args.logistic_regression_ids_ = logistic_regression_ids
    except AttributeError:
        pass

    # Parses cluster names to generate datasets if provided
    try:
        if command_args.cluster_datasets:
            cluster_datasets_arg = [
                dataset.strip()
                for dataset in command_args.cluster_datasets.split(
                    command_args.args_separator)
            ]
            command_args.cluster_datasets_ = cluster_datasets_arg
        else:
            command_args.cluster_datasets_ = []
    except AttributeError:
        pass

    # Parses cluster names to generate models if provided
    try:
        if command_args.cluster_models:
            cluster_models_arg = [
                model.strip() for model in command_args.cluster_models.split(
                    command_args.args_separator)
            ]
            command_args.cluster_models_ = cluster_models_arg
        else:
            command_args.cluster_models_ = []
    except AttributeError:
        pass

    # Parses summary_fields to exclude from the clustering algorithm
    try:
        if command_args.summary_fields:
            summary_fields_arg = [
                field.strip() for field in command_args.summary_fields.split(
                    command_args.args_separator)
            ]
            command_args.summary_fields_ = summary_fields_arg
        else:
            command_args.summary_fields_ = []
    except AttributeError:
        pass

    anomaly_ids = []
    try:
        # Parses anomaly/ids if provided.
        if command_args.anomalies:
            anomaly_ids = u.read_resources(command_args.anomalies)
        command_args.anomaly_ids_ = anomaly_ids
    except AttributeError:
        pass

    # Retrieve anomaly/ids if provided.
    try:
        if command_args.anomaly_tag:
            anomaly_ids = (anomaly_ids + u.list_ids(
                api.list_anomalies, "tags__in=%s" % command_args.anomaly_tag))
        command_args.anomaly_ids_ = anomaly_ids
    except AttributeError:
        pass

    sample_ids = []
    try:
        # Parses sample/ids if provided.
        if command_args.samples:
            sample_ids = u.read_resources(command_args.samples)
        command_args.sample_ids_ = sample_ids
    except AttributeError:
        pass

    # Retrieve sample/ids if provided.
    try:
        if command_args.sample_tag:
            sample_ids = (sample_ids + u.list_ids(
                api.list_samples, "tags__in=%s" % command_args.sample_tag))
        command_args.sample_ids_ = sample_ids
    except AttributeError:
        pass

    # Parses sample row fields
    try:
        if command_args.row_fields:
            row_fields_arg = [
                field.strip() for field in command_args.row_fields.split(
                    command_args.args_separator)
            ]
            command_args.row_fields_ = row_fields_arg
        else:
            command_args.row_fields_ = []
    except AttributeError:
        pass

    # Parses sample stat_fields
    try:
        if command_args.stat_fields:
            stat_fields_arg = [
                field.strip() for field in command_args.stat_fields.split(
                    command_args.args_separator)
            ]
            command_args.stat_fields_ = stat_fields_arg
        else:
            command_args.stat_fields_ = []
    except AttributeError:
        pass

    return {"api": api, "args": command_args}
示例#16
0
文件: args.py 项目: mmerce/bigmler
def transform_args(command_args, flags, api, user_defaults):
    """Transforms the formatted argument strings into structured arguments

    """
    # Parses attributes in json format if provided
    command_args.json_args = {}

    for resource_type in RESOURCE_TYPES:
        attributes_file = getattr(command_args, "%s_attributes" % resource_type, None)
        if attributes_file is not None:
            command_args.json_args[resource_type] = u.read_json(attributes_file)
        else:
            command_args.json_args[resource_type] = {}

    # Parses dataset generators in json format if provided
    if command_args.new_fields:
        json_generators = u.read_json(command_args.new_fields)
        command_args.dataset_json_generators = json_generators
    else:
        command_args.dataset_json_generators = {}

    # Parses multi-dataset attributes in json such as field maps
    if command_args.multi_dataset_attributes:
        multi_dataset_json = u.read_json(command_args.multi_dataset_attributes)
        command_args.multi_dataset_json = multi_dataset_json
    else:
        command_args.multi_dataset_json = {}

    dataset_ids = None
    command_args.dataset_ids = []
    # Parses dataset/id if provided.
    if command_args.datasets:
        dataset_ids = u.read_datasets(command_args.datasets)
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    test_dataset_ids = None
    command_args.test_dataset_ids = []
    # Parses dataset/id if provided.
    if command_args.test_datasets:
        test_dataset_ids = u.read_datasets(command_args.test_datasets)
        command_args.test_dataset_ids = test_dataset_ids

    # Retrieve dataset/ids if provided.
    if command_args.dataset_tag:
        dataset_ids = dataset_ids.extend(u.list_ids(api.list_datasets, "tags__in=%s" % command_args.dataset_tag))
        if len(dataset_ids) == 1:
            command_args.dataset = dataset_ids[0]
        command_args.dataset_ids = dataset_ids

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless that it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append("BigMLer")
        command_args.tag.append("BigMLer_%s" % NOW)

    # Checks combined votes method
    try:
        if (
            command_args.method
            and command_args.method != COMBINATION_LABEL
            and not (command_args.method in COMBINATION_WEIGHTS.keys())
        ):
            command_args.method = 0
        else:
            combiner_methods = dict([[value, key] for key, value in COMBINER_MAP.items()])
            combiner_methods[COMBINATION_LABEL] = COMBINATION
            command_args.method = combiner_methods.get(command_args.method, 0)
    except AttributeError:
        pass

    # Checks missing_strategy
    try:
        if command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys()):
            command_args.missing_strategy = 0
        else:
            command_args.missing_strategy = MISSING_STRATEGIES.get(command_args.missing_strategy, 0)
    except AttributeError:
        pass

    # Adds replacement=True if creating ensemble and nothing is specified
    try:
        if (
            command_args.number_of_models > 1
            and not command_args.replacement
            and not "--no-replacement" in flags
            and not "replacement" in user_defaults
            and not "--no-randomize" in flags
            and not "randomize" in user_defaults
            and not "--sample-rate" in flags
            and not "sample_rate" in user_defaults
        ):
            command_args.replacement = True
    except AttributeError:
        pass

    # Old value for --prediction-info='full data' maps to 'full'
    if command_args.prediction_info == "full data":
        print "WARNING: 'full data' is a deprecated value. Use 'full' instead"
        command_args.prediction_info = FULL_FORMAT

    # Parses class, weight pairs for objective weight
    try:
        if command_args.objective_weights:
            objective_weights = u.read_objective_weights(command_args.objective_weights)
            command_args.objective_weights_json = objective_weights
    except AttributeError:
        pass

    try:
        command_args.multi_label_fields_list = []
        if command_args.multi_label_fields is not None:
            multi_label_fields = command_args.multi_label_fields.strip()
            command_args.multi_label_fields_list = multi_label_fields.split(command_args.args_separator)
    except AttributeError:
        pass

    # Sets shared_flag if --shared or --unshared has been used
    if "--shared" in flags or "--unshared" in flags:
        command_args.shared_flag = True
    else:
        command_args.shared_flag = False

    command_args.has_models_ = (
        (hasattr(command_args, "model") and command_args.model)
        or (hasattr(command_args, "models") and command_args.models)
        or (hasattr(command_args, "ensemble") and command_args.ensemble)
        or (hasattr(command_args, "ensembles") and command_args.ensembles)
        or (hasattr(command_args, "cluster") and command_args.cluster)
        or (hasattr(command_args, "clusters") and command_args.clusters)
        or (hasattr(command_args, "model_tag") and command_args.model_tag)
        or (hasattr(command_args, "anomaly") and command_args.anomaly)
        or (hasattr(command_args, "anomalies") and command_args.anomalies)
        or (hasattr(command_args, "ensemble_tag") and command_args.ensemble_tag)
        or (hasattr(command_args, "cluster_tag") and command_args.cluster_tag)
        or (hasattr(command_args, "anomaly_tag") and command_args.anomaly_tag)
    )

    command_args.has_datasets_ = (
        (hasattr(command_args, "dataset") and command_args.dataset)
        or (hasattr(command_args, "datasets") and command_args.datasets)
        or (hasattr(command_args, "dataset_tag") and command_args.dataset_tag)
    )