def remote_forecast(time_series, forecast_args, args, api, resume, prediction_file=None, session_file=None, path=None, log=None): """Computes a remote forecast. """ time_series_id = bigml.api.get_time_series_id( \ time_series) # if resuming, try to extract dataset form log files if resume: message = u.dated("Forecast not found. Resuming.\n") resume, forecast = c.checkpoint( c.is_forecast_created, path, debug=args.debug, message=message, log_file=session_file, console=args.verbosity) if not resume: local_time_series = TimeSeries(time_series, api=args.retrieve_api_) output = args.predictions if args.test_set is not None: input_data = u.read_json(args.test_set) elif args.horizon is not None: input_data = {local_time_series.objective_id: { \ "horizon": args.horizon}} forecast = create_forecast( time_series_id, input_data, forecast_args, args, api, session_file=session_file, path=path, log=log) write_forecasts(forecast["object"]["forecast"]["result"], output)
def attribute_args(command_args): """Reads the attributes in JSON files """ # Parses attributes in json format if provided command_args.json_args = {} for resource_type in RESOURCE_TYPES: attributes_file = getattr(command_args, "%s_attributes" % resource_type, None) if attributes_file is not None: command_args.json_args[resource_type] = u.read_json( attributes_file) else: command_args.json_args[resource_type] = {}
def forecast(time_series, args, session_file=None): """Computes a time-series forecast """ local_time_series = TimeSeries(time_series, api=args.retrieve_api_) output = args.predictions # Local forecasts: Forecasts are computed locally message = u.dated("Creating local forecasts.\n") u.log_message(message, log_file=session_file, console=args.verbosity) input_data = [] if args.test_set is not None: input_data = [u.read_json(args.test_set)] elif args.horizon is not None: input_data = [{local_time_series.objective_id: { \ "horizon": args.horizon}}] write_forecasts(local_time_series.forecast(*input_data), output)
def remote_forecast(time_series, forecast_args, args, api, resume, prediction_file=None, session_file=None, path=None, log=None): """Computes a remote forecast. """ time_series_id = bigml.api.get_time_series_id( \ time_series) # if resuming, try to extract dataset form log files if resume: message = u.dated("Forecast not found. Resuming.\n") resume, forecast = c.checkpoint(c.is_forecast_created, path, debug=args.debug, message=message, log_file=session_file, console=args.verbosity) if not resume: local_time_series = TimeSeries(time_series, api=args.retrieve_api_) output = args.predictions if args.test_set is not None: input_data = u.read_json(args.test_set) elif args.horizon is not None: input_data = {local_time_series.objective_id: { \ "horizon": args.horizon}} forecast = create_forecast(time_series_id, input_data, forecast_args, args, api, session_file=session_file, path=path, log=log) write_forecasts(forecast["object"]["forecast"]["result"], output)
def transform_args(command_args, flags, api, user_defaults): """Transforms the formatted argument strings into structured arguments """ # Parses attributes in json format if provided command_args.json_args = {} for resource_type in RESOURCE_TYPES: attributes_file = getattr(command_args, "%s_attributes" % resource_type, None) if attributes_file is not None: command_args.json_args[resource_type] = u.read_json( attributes_file) else: command_args.json_args[resource_type] = {} # Parses dataset generators in json format if provided if command_args.new_fields: json_generators = u.read_json(command_args.new_fields) command_args.dataset_json_generators = json_generators else: command_args.dataset_json_generators = {} # Parses multi-dataset attributes in json such as field maps if command_args.multi_dataset_attributes: multi_dataset_json = u.read_json(command_args.multi_dataset_attributes) command_args.multi_dataset_json = multi_dataset_json else: command_args.multi_dataset_json = {} dataset_ids = None command_args.dataset_ids = [] # Parses dataset/id if provided. if command_args.datasets: dataset_ids = u.read_datasets(command_args.datasets) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids # Reading test dataset ids is delayed till the very moment of use to ensure # that the newly generated resources files can be used there too command_args.test_dataset_ids = [] # Retrieve dataset/ids if provided. if command_args.dataset_tag: dataset_ids = dataset_ids.extend( u.list_ids(api.list_datasets, "tags__in=%s" % command_args.dataset_tag)) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids # Reads a json filter if provided. if command_args.json_filter: json_filter = u.read_json_filter(command_args.json_filter) command_args.json_filter = json_filter # Reads a lisp filter if provided. if command_args.lisp_filter: lisp_filter = u.read_lisp_filter(command_args.lisp_filter) command_args.lisp_filter = lisp_filter # Adds default tags unless that it is requested not to do so. if command_args.no_tag: command_args.tag.append('BigMLer') command_args.tag.append('BigMLer_%s' % NOW) # Checks combined votes method try: if (command_args.method and command_args.method != COMBINATION_LABEL and not (command_args.method in COMBINATION_WEIGHTS.keys())): command_args.method = 0 else: combiner_methods = dict([[value, key] for key, value in COMBINER_MAP.items()]) combiner_methods[COMBINATION_LABEL] = COMBINATION command_args.method = combiner_methods.get(command_args.method, 0) except AttributeError: pass # Checks missing_strategy try: if (command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys())): command_args.missing_strategy = 0 else: command_args.missing_strategy = MISSING_STRATEGIES.get( command_args.missing_strategy, 0) except AttributeError: pass # Adds replacement=True if creating ensemble and nothing is specified try: if (command_args.number_of_models > 1 and not command_args.replacement and not '--no-replacement' in flags and not 'replacement' in user_defaults and not '--no-randomize' in flags and not 'randomize' in user_defaults and not '--sample-rate' in flags and not 'sample_rate' in user_defaults): command_args.replacement = True except AttributeError: pass try: # Old value for --prediction-info='full data' maps to 'full' if command_args.prediction_info == 'full data': print("WARNING: 'full data' is a deprecated value. Use" " 'full' instead") command_args.prediction_info = FULL_FORMAT except AttributeError: pass # Parses class, weight pairs for objective weight try: if command_args.objective_weights: objective_weights = (u.read_objective_weights( command_args.objective_weights)) command_args.objective_weights_json = objective_weights except AttributeError: pass try: command_args.multi_label_fields_list = [] if command_args.multi_label_fields is not None: multi_label_fields = command_args.multi_label_fields.strip() command_args.multi_label_fields_list = multi_label_fields.split( command_args.args_separator) except AttributeError: pass # Sets shared_flag if --shared or --unshared has been used if '--shared' in flags or '--unshared' in flags: command_args.shared_flag = True else: command_args.shared_flag = False # Set remote on if scoring a trainind dataset in bigmler anomaly try: if command_args.score: command_args.remote = True if not "--prediction-info" in flags: command_args.prediction_info = FULL_FORMAT except AttributeError: pass command_args.has_models_ = ( (hasattr(command_args, 'model') and command_args.model) or (hasattr(command_args, 'models') and command_args.models) or (hasattr(command_args, 'ensemble') and command_args.ensemble) or (hasattr(command_args, 'ensembles') and command_args.ensembles) or (hasattr(command_args, 'cluster') and command_args.cluster) or (hasattr(command_args, 'clusters') and command_args.clusters) or (hasattr(command_args, 'model_tag') and command_args.model_tag) or (hasattr(command_args, 'anomaly') and command_args.anomaly) or (hasattr(command_args, 'anomalies') and command_args.anomalies) or (hasattr(command_args, 'ensemble_tag') and command_args.ensemble_tag) or (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag) or (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag)) command_args.has_datasets_ = ( (hasattr(command_args, 'dataset') and command_args.dataset) or (hasattr(command_args, 'datasets') and command_args.datasets) or (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag)) command_args.has_test_datasets_ = ( (hasattr(command_args, 'test_dataset') and command_args.test_dataset) or (hasattr(command_args, 'test_datasets') and command_args.test_datasets) or (hasattr(command_args, 'test_dataset_tag') and command_args.test_dataset_tag))
def get_output_args(api, command_args, resume): """Returns the output args needed for the main bigmler computation process """ try: if command_args.train_stdin: if command_args.test_stdin: sys.exit("The standard input can't be used both for training " "and testing. Choose one of them") command_args.training_set = StringIO(sys.stdin.read()) elif command_args.test_stdin: command_args.test_set = StringIO(sys.stdin.read()) except AttributeError: pass try: if command_args.objective_field: objective = command_args.objective_field try: command_args.objective_field = int(objective) except ValueError: if not command_args.train_header: sys.exit("The %s has been set as objective field but" " the file has not been marked as containing" " headers.\nPlease set the --train-header flag if" " the file has headers or use a column number" " to set the objective field." % objective) except AttributeError: pass command_args.resume_ = resume command_args.predictions = command_args.output command_args.projections = command_args.output # Reads description if provided. try: if command_args.description: description_arg = u.read_description(command_args.description) command_args.description_ = description_arg else: command_args.description_ = DEFAULT_DESCRIPTION except AttributeError: pass # Parses fields if provided. try: if command_args.field_attributes: field_attributes_arg = (u.read_field_attributes( command_args.field_attributes)) command_args.field_attributes_ = field_attributes_arg else: command_args.field_attributes_ = [] except AttributeError: pass try: if command_args.test_field_attributes: field_attributes_arg = (u.read_field_attributes( command_args.test_field_attributes)) command_args.test_field_attributes_ = field_attributes_arg else: command_args.test_field_attributes_ = [] except AttributeError: pass # Parses types if provided. try: if command_args.types: types_arg = u.read_types(command_args.types) command_args.types_ = types_arg else: command_args.types_ = None if command_args.test_types: types_arg = u.read_types(command_args.test_types) command_args.test_types_ = types_arg else: command_args.test_types_ = None except AttributeError: pass # Parses dataset fields if provided. try: if command_args.dataset_fields: dataset_fields_arg = [ field.strip() for field in command_args.dataset_fields.split( command_args.args_separator) ] command_args.dataset_fields_ = dataset_fields_arg else: command_args.dataset_fields_ = [] except AttributeError: pass # Parses model input fields if provided. try: if command_args.model_fields: model_fields_arg = [ field.strip() for field in command_args.model_fields.split( command_args.args_separator) ] command_args.model_fields_ = model_fields_arg else: command_args.model_fields_ = [] except AttributeError: pass # Parses cluster input fields if provided. try: if command_args.cluster_fields: cluster_fields_arg = [ field.strip() for field in command_args.cluster_fields.split( command_args.args_separator) ] command_args.cluster_fields_ = cluster_fields_arg else: command_args.cluster_fields_ = [] except AttributeError: pass # Parses association input fields if provided. try: if command_args.association_fields: association_fields_arg = [ field.strip() for field in \ command_args.association_fields.split( \ command_args.args_separator)] command_args.association_fields_ = association_fields_arg else: command_args.association_fields_ = [] except AttributeError: pass # Parses anomaly input fields if provided. try: if command_args.anomaly_fields: anomaly_fields_arg = [ field.strip() for field in command_args.anomaly_fields.split( command_args.args_separator) ] command_args.anomaly_fields_ = anomaly_fields_arg else: command_args.anomaly_fields_ = [] except AttributeError: pass # Parses logistic regression input fields if provided. try: if command_args.logistic_fields: logistic_fields_arg = [ field.strip() for field in command_args.logistic_fields.split( command_args.args_separator) ] command_args.logistic_fields_ = logistic_fields_arg else: command_args.logistic_fields_ = [] except AttributeError: pass # Parses linear regression input fields if provided. try: if command_args.linear_fields: linear_fields_arg = [ field.strip() for field in command_args.linear_fields.split( command_args.args_separator) ] command_args.linear_fields_ = linear_fields_arg else: command_args.linear_fields_ = [] except AttributeError: pass # Parses deepnet input fields if provided. try: if command_args.deepnet_fields: deepnet_fields_arg = [ field.strip() for field in command_args.deepnet_fields.split( command_args.args_separator) ] command_args.deepnet_fields_ = deepnet_fields_arg else: command_args.deepnet_fields_ = [] except AttributeError: pass # Parses topic model fields if provided. try: if command_args.topic_fields: topic_fields_arg = [ field.strip() for field in command_args.topic_fields.split( command_args.args_separator) ] command_args.topic_model_fields_ = topic_fields_arg else: command_args.topic_model_fields_ = [] except AttributeError: pass # Parses pca fields if provided. try: if command_args.pca_fields: pca_fields_arg = [ field.strip() for field in command_args.pca_fields.split( command_args.args_separator) ] command_args.pca_fields_ = pca_fields_arg else: command_args.pca_fields_ = [] except AttributeError: pass # Parses field_codings for deepnet try: if command_args.field_codings: command_args.field_codings_ = u.read_json( command_args.field_codings) else: command_args.field_codings_ = [] except AttributeError: pass # Parses imports for scripts and libraries. try: if command_args.imports: imports_arg = [ field.strip() for field in command_args.imports.split( command_args.args_separator) ] command_args.imports_ = imports_arg else: command_args.imports_ = [] except AttributeError: pass # Parses objective fields for time-series. try: if command_args.objectives: objective_fields_arg = [ field.strip() for field in command_args.objectives.split( command_args.args_separator) ] command_args.objective_fields_ = objective_fields_arg else: command_args.objective_fields_ = [] except AttributeError: pass # Parses range. try: if command_args.range: range_arg = [ value.strip() for value in command_args.range.split( command_args.args_separator) ] command_args.range_ = range_arg else: command_args.range_ = [] except AttributeError: pass # Parses parameters for scripts. try: if command_args.declare_inputs: command_args.parameters_ = u.read_json(command_args.declare_inputs) else: command_args.parameters_ = [] except AttributeError: pass # Parses creation_defaults for executions. try: if command_args.creation_defaults: command_args.creation_defaults_ = u.read_json( command_args.creation_defaults) else: command_args.creation_defaults_ = {} except AttributeError: pass # Parses arguments for executions. try: if command_args.inputs: command_args.arguments_ = u.read_json(command_args.inputs) else: command_args.arguments_ = [] except AttributeError: pass # Parses input maps for executions. try: if command_args.input_maps: command_args.input_maps_ = u.read_json(command_args.input_maps) else: command_args.input_maps_ = [] except AttributeError: pass # Parses outputs for executions. try: if command_args.outputs: command_args.outputs_ = u.read_json(command_args.outputs) else: command_args.outputs_ = [] except AttributeError: pass # Parses outputs for scripts. try: if command_args.declare_outputs: command_args.declare_outputs_ = \ u.read_json(command_args.declare_outputs) else: command_args.declare_outputs_ = [] except AttributeError: pass model_ids = [] try: # Parses model/ids if provided. if command_args.models: model_ids = u.read_resources(command_args.models) command_args.model_ids_ = model_ids except AttributeError: pass # Retrieve model/ids if provided. try: if command_args.model_tag: model_ids = (model_ids + u.list_ids( api.list_models, "tags__in=%s" % command_args.model_tag)) command_args.model_ids_ = model_ids except AttributeError: pass # Reads votes files in the provided directories. try: if command_args.votes_dirs: dirs = [ directory.strip() for directory in command_args.votes_dirs.split(command_args.args_separator) ] votes_path = os.path.dirname(command_args.predictions) votes_files = u.read_votes_files(dirs, votes_path) command_args.votes_files_ = votes_files else: command_args.votes_files_ = [] except AttributeError: pass # Parses fields map if provided. try: if command_args.fields_map: fields_map_arg = u.read_fields_map(command_args.fields_map) command_args.fields_map_ = fields_map_arg else: command_args.fields_map_ = None except AttributeError: pass cluster_ids = [] try: # Parses cluster/ids if provided. if command_args.clusters: cluster_ids = u.read_resources(command_args.clusters) command_args.cluster_ids_ = cluster_ids except AttributeError: pass # Retrieve cluster/ids if provided. try: if command_args.cluster_tag: cluster_ids = (cluster_ids + u.list_ids( api.list_clusters, "tags__in=%s" % command_args.cluster_tag)) command_args.cluster_ids_ = cluster_ids except AttributeError: pass association_ids = [] try: # Parses association/ids if provided. if command_args.associations: association_ids = u.read_resources(command_args.associations) command_args.association_ids_ = association_ids except AttributeError: pass # Retrieve association/ids if provided. try: if command_args.association_tag: association_ids = ( association_ids + u.list_ids(api.list_associations, "tags__in=%s" % command_args.association_tag)) command_args.association_ids_ = association_ids except AttributeError: pass logistic_regression_ids = [] try: # Parses logisticregression/ids if provided. if command_args.logistic_regressions: logistic_regression_ids = u.read_resources( \ command_args.logistic_regressions) command_args.logistic_regression_ids_ = logistic_regression_ids except AttributeError: pass # Retrieve logsticregression/ids if provided. try: if command_args.logistic_regression_tag: logistic_regression_ids = (logistic_regression_ids + \ u.list_ids(api.list_logistic_regressions, "tags__in=%s" % command_args.logistic_regression_tag)) command_args.logistic_regression_ids_ = logistic_regression_ids except AttributeError: pass linear_regression_ids = [] try: # Parses linearregression/ids if provided. if command_args.linear_regressions: linear_regression_ids = u.read_resources( \ command_args.linear_regressions) command_args.linear_regression_ids_ = linear_regression_ids except AttributeError: pass # Retrieve linearregression/ids if provided. try: if command_args.linear_regression_tag: linear_regression_ids = (linear_regression_ids + \ u.list_ids(api.list_linear_regressions, "tags__in=%s" % command_args.linear_regression_tag)) command_args.linear_regression_ids_ = linear_regression_ids except AttributeError: pass deepnet_ids = [] try: # Parses deepnet/ids if provided. if command_args.deepnets: deepnet_ids = u.read_resources( \ command_args.deepnets) command_args.deepnet_ids_ = deepnet_ids except AttributeError: pass # Retrieve deepnet/ids if provided. try: if command_args.deepnet_tag: deepnet_ids = (deepnet_ids + \ u.list_ids(api.list_deepnets, "tags__in=%s" % command_args.deepnet_tag)) command_args.deepnet_ids_ = deepnet_ids except AttributeError: pass topic_model_ids = [] try: # Parses topicmodel/ids if provided. if command_args.topic_models: topic_model_ids = u.read_resources(command_args.topic_models) command_args.topic_model_ids_ = topic_model_ids except AttributeError: pass # Retrieve topicmodel/ids if provided. try: if command_args.topic_model_tag: topic_model_ids = ( topic_model_ids + u.list_ids(api.list_topic_models, "tags__in=%s" % command_args.topic_model_tag)) command_args.topic_model_ids_ = topic_model_ids except AttributeError: pass time_series_ids = [] try: # Parses timeseries/ids if provided. if command_args.time_series_set: time_series_ids = u.read_resources(command_args.time_series) command_args.time_series_ids_ = time_series_ids except AttributeError: pass # Retrieve timeseries/ids if provided. try: if command_args.time_series_tag: time_series_ids = ( time_series_ids + u.list_ids(api.list_time_series, "tags__in=%s" % command_args.time_series_tag)) command_args.time_series_ids_ = time_series_ids except AttributeError: pass pca_ids = [] try: # Parses pca/ids if provided. if command_args.pcas: pca_ids = u.read_resources(command_args.pcas) command_args.pca_ids_ = pca_ids except AttributeError: pass # Retrieve pca/ids if provided. try: if command_args.pca_tag: pca_ids = (pca_ids + u.list_ids( api.pca_series, "tags__in=%s" % command_args.pca_tag)) command_args.pca_ids_ = pca_ids except AttributeError: pass # Parses models list for fusions if provided. try: if command_args.fusion_models: fusion_models_arg = [ model.strip() for model in command_args.fusion_models.split( command_args.args_separator) ] command_args.fusion_models_ = fusion_models_arg else: command_args.fusion_models_ = [] except AttributeError: pass # Parses models list for fusions if provided. if not has_value(command_args, "fusion_models_"): try: if command_args.fusion_models_file: fusion_models_arg = u.read_json( command_args.fusion_models_file) command_args.fusion_models_ = fusion_models_arg else: command_args.fusion_models_ = [] except AttributeError: pass fusion_ids = [] try: # Parses fusion/ids if provided. if command_args.fusions: fusion_ids = u.read_resources(command_args.fusions) command_args.fusion_ids_ = fusion_ids except AttributeError: pass # Retrieve fusion/ids if provided. try: if command_args.fusion_tag: fusion_ids = (fusion_ids + u.list_ids( api.fusion_series, "tags__in=%s" % command_args.fusion_tag)) command_args.fusion_ids_ = fusion_ids except AttributeError: pass # Parses cluster names to generate datasets if provided try: if command_args.cluster_datasets: cluster_datasets_arg = [ dataset.strip() for dataset in command_args.cluster_datasets.split( command_args.args_separator) ] command_args.cluster_datasets_ = cluster_datasets_arg else: command_args.cluster_datasets_ = [] except AttributeError: pass # Parses cluster names to generate models if provided try: if command_args.cluster_models: cluster_models_arg = [ model.strip() for model in command_args.cluster_models.split( command_args.args_separator) ] command_args.cluster_models_ = cluster_models_arg else: command_args.cluster_models_ = [] except AttributeError: pass # Parses summary_fields to exclude from the clustering algorithm try: if command_args.summary_fields: summary_fields_arg = [ field.strip() for field in command_args.summary_fields.split( command_args.args_separator) ] command_args.summary_fields_ = summary_fields_arg else: command_args.summary_fields_ = [] except AttributeError: pass anomaly_ids = [] try: # Parses anomaly/ids if provided. if command_args.anomalies: anomaly_ids = u.read_resources(command_args.anomalies) command_args.anomaly_ids_ = anomaly_ids except AttributeError: pass # Retrieve anomaly/ids if provided. try: if command_args.anomaly_tag: anomaly_ids = (anomaly_ids + u.list_ids( api.list_anomalies, "tags__in=%s" % command_args.anomaly_tag)) command_args.anomaly_ids_ = anomaly_ids except AttributeError: pass sample_ids = [] try: # Parses sample/ids if provided. if command_args.samples: sample_ids = u.read_resources(command_args.samples) command_args.sample_ids_ = sample_ids except AttributeError: pass # Retrieve sample/ids if provided. try: if command_args.sample_tag: sample_ids = (sample_ids + u.list_ids( api.list_samples, "tags__in=%s" % command_args.sample_tag)) command_args.sample_ids_ = sample_ids except AttributeError: pass # Parses sample row fields try: if command_args.row_fields: row_fields_arg = [ field.strip() for field in command_args.row_fields.split( command_args.args_separator) ] command_args.row_fields_ = row_fields_arg else: command_args.row_fields_ = [] except AttributeError: pass # Parses sample stat_fields try: if command_args.stat_fields: stat_fields_arg = [ field.strip() for field in command_args.stat_fields.split( command_args.args_separator) ] command_args.stat_fields_ = stat_fields_arg else: command_args.stat_fields_ = [] except AttributeError: pass # if boosting arguments are used, set on boosting try: if command_args.iterations or command_args.learning_rate \ or command_args.early_holdout: command_args.boosting = True except AttributeError: pass # Extracts the imports from the JSON metadata file try: if command_args.embedded_imports: command_args.embedded_imports_ = u.read_resources( \ command_args.embedded_imports) else: command_args.embedded_imports_ = [] except AttributeError: pass # Parses hidden_layers for deepnets. try: if command_args.hidden_layers: command_args.hidden_layers_ = u.read_json( command_args.hidden_layers) else: command_args.hidden_layers_ = [] except AttributeError: pass # Parses operating_point for predictions. try: if command_args.operating_point: command_args.operating_point_ = u.read_json( command_args.operating_point) else: command_args.operating_point_ = [] except AttributeError: pass # Parses the json_query try: if command_args.json_query: command_args.json_query_ = u.read_json(command_args.json_query) else: command_args.json_query_ = None except AttributeError: pass # Parses the models_file try: if command_args.models_file: command_args.models_file_ = u.read_json(command_args.models_file) else: command_args.models_file_ = None except AttributeError: pass # Parses the sql_output_fields try: if command_args.sql_output_fields: command_args.sql_output_fields_ = u.read_json( \ command_args.sql_output_fields) else: command_args.sql_output_fields_ = None except AttributeError: pass # Parses connection info for external connectors try: if command_args.connection_json: command_args.connection_json_ = u.read_json( command_args.connection_json) else: command_args.connection_json_ = {} except AttributeError: pass return {"api": api, "args": command_args}
def transform_args(command_args, flags, api): """Transforms the formatted argument strings into structured arguments """ attribute_args(command_args) # Parses dataset generators in json format if provided try: if command_args.new_fields: json_generators = u.read_json(command_args.new_fields) command_args.dataset_json_generators = json_generators else: command_args.dataset_json_generators = {} except AttributeError: pass # Parses multi-dataset attributes in json such as field maps try: if command_args.multi_dataset_attributes: multi_dataset_json = u.read_json( command_args.multi_dataset_attributes) command_args.multi_dataset_json = multi_dataset_json else: command_args.multi_dataset_json = {} except AttributeError: pass transform_dataset_options(command_args, api) script_ids = None command_args.script_ids = [] # Parses script/id if provided. try: if command_args.scripts: script_ids = u.read_resources(command_args.scripts) if len(script_ids) == 1: command_args.script = script_ids[0] command_args.script_ids = script_ids except AttributeError: pass # Retrieve script/ids if provided. try: if command_args.script_tag: script_ids = script_ids.extend( u.list_ids(api.list_scripts, "tags__in=%s" % command_args.script_tag)) if len(script_ids) == 1: command_args.script = script_ids[0] command_args.script_ids = script_ids except AttributeError: pass # Reads a json filter if provided. try: if command_args.json_filter: json_filter = u.read_json_filter(command_args.json_filter) command_args.json_filter = json_filter except AttributeError: pass # Reads a lisp filter if provided. try: if command_args.lisp_filter: lisp_filter = u.read_lisp_filter(command_args.lisp_filter) command_args.lisp_filter = lisp_filter except AttributeError: pass # Adds default tags unless that it is requested not to do so. try: if command_args.no_tag: command_args.tag.append('BigMLer') command_args.tag.append('BigMLer_%s' % NOW) except AttributeError: pass # Checks combined votes method try: if (command_args.method and command_args.method != COMBINATION_LABEL and not command_args.method in COMBINATION_WEIGHTS.keys()): command_args.method = 0 else: combiner_methods = dict([[value, key] for key, value in COMBINER_MAP.items()]) combiner_methods[COMBINATION_LABEL] = COMBINATION command_args.method = combiner_methods.get(command_args.method, 0) except AttributeError: pass # Checks missing_strategy try: if (command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys())): command_args.missing_strategy = 0 else: command_args.missing_strategy = MISSING_STRATEGIES.get( command_args.missing_strategy, 0) except AttributeError: pass try: # Old value for --prediction-info='full data' maps to 'full' if command_args.prediction_info == 'full data': print("WARNING: 'full data' is a deprecated value. Use" " 'full' instead") command_args.prediction_info = FULL_FORMAT except AttributeError: pass # Parses class, weight pairs for objective weight try: if command_args.objective_weights: objective_weights = (u.read_objective_weights( command_args.objective_weights)) command_args.objective_weights_json = objective_weights except AttributeError: pass try: command_args.multi_label_fields_list = [] if command_args.multi_label_fields is not None: multi_label_fields = command_args.multi_label_fields.strip() command_args.multi_label_fields_list = multi_label_fields.split( command_args.args_separator) except AttributeError: pass # Sets shared_flag if --shared or --unshared has been used command_args.shared_flag = '--shared' in flags or '--unshared' in flags # Set remote on if scoring a trainind dataset in bigmler anomaly try: if command_args.score: command_args.remote = True if not "--prediction-info" in flags: command_args.prediction_info = FULL_FORMAT except AttributeError: pass command_args.has_supervised_ = ( (hasattr(command_args, 'model') and command_args.model) or (hasattr(command_args, 'models') and command_args.models) or (hasattr(command_args, 'ensemble') and command_args.ensemble) or (hasattr(command_args, 'ensembles') and command_args.ensembles) or (hasattr(command_args, 'model_tag') and command_args.model_tag) or (hasattr(command_args, 'logistic_regression') and command_args.logistic_regression) or (hasattr(command_args, 'logistic_regressions') and command_args.logistic_regressions) or (hasattr(command_args, 'logistic_regression_tag') and command_args.logistic_regression_tag) or (hasattr(command_args, 'deepnet') and command_args.deepnet) or (hasattr(command_args, 'deepnets') and command_args.deepnets) or (hasattr(command_args, 'deepnet_tag') and command_args.deepnet_tag) or (hasattr(command_args, 'ensemble_tag') and command_args.ensemble_tag)) command_args.has_models_ = ( command_args.has_supervised_ or (hasattr(command_args, 'cluster') and command_args.cluster) or (hasattr(command_args, 'clusters') and command_args.clusters) or (hasattr(command_args, 'anomaly') and command_args.anomaly) or (hasattr(command_args, 'anomalies') and command_args.anomalies) or (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag) or (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag)) command_args.has_datasets_ = ( (hasattr(command_args, 'dataset') and command_args.dataset) or (hasattr(command_args, 'datasets') and command_args.datasets) or (hasattr(command_args, 'dataset_ids') and command_args.dataset_ids) or (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag)) command_args.has_test_datasets_ = ( (hasattr(command_args, 'test_dataset') and command_args.test_dataset) or (hasattr(command_args, 'test_datasets') and command_args.test_datasets) or (hasattr(command_args, 'test_dataset_tag') and command_args.test_dataset_tag)) command_args.new_dataset = ( (hasattr(command_args, 'datasets_json') and command_args.datasets_json) or (hasattr(command_args, 'multi_dataset') and command_args.multi_dataset) or (hasattr(command_args, 'juxtapose') and command_args.juxtapose) or (hasattr(command_args, 'sql_query') and command_args.sql_query) or (hasattr(command_args, 'sql_output_fields') and command_args.sql_output_fields) or (hasattr(command_args, 'json_query') and command_args.json_query))
def transform_args(command_args, flags, api, user_defaults): """Transforms the formatted argument strings into structured arguments """ # Parses attributes in json format if provided command_args.json_args = {} json_attribute_options = { 'source': command_args.source_attributes, 'dataset': command_args.dataset_attributes, 'model': command_args.model_attributes, 'ensemble': command_args.ensemble_attributes, 'evaluation': command_args.evaluation_attributes, 'batch_prediction': command_args.batch_prediction_attributes} for resource_type, attributes_file in json_attribute_options.items(): if attributes_file is not None: command_args.json_args[resource_type] = u.read_json( attributes_file) else: command_args.json_args[resource_type] = {} # Parses dataset generators in json format if provided if command_args.new_fields: json_generators = u.read_json(command_args.new_fields) command_args.dataset_json_generators = json_generators else: command_args.dataset_json_generators = {} # Parses multi-dataset attributes in json such as field maps if command_args.multi_dataset_attributes: multi_dataset_json = u.read_json(command_args.multi_dataset_attributes) command_args.multi_dataset_json= multi_dataset_json else: command_args.multi_dataset_json = {} dataset_ids = None command_args.dataset_ids = [] # Parses dataset/id if provided. if command_args.datasets: dataset_ids = u.read_datasets(command_args.datasets) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids test_dataset_ids = None command_args.test_dataset_ids = [] # Parses dataset/id if provided. if command_args.test_datasets: test_dataset_ids = u.read_datasets(command_args.test_datasets) command_args.test_dataset_ids = test_dataset_ids # Retrieve dataset/ids if provided. if command_args.dataset_tag: dataset_ids = dataset_ids.extend( u.list_ids(api.list_datasets, "tags__in=%s" % command_args.dataset_tag)) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids # Reads a json filter if provided. if command_args.json_filter: json_filter = u.read_json_filter(command_args.json_filter) command_args.json_filter = json_filter # Reads a lisp filter if provided. if command_args.lisp_filter: lisp_filter = u.read_lisp_filter(command_args.lisp_filter) command_args.lisp_filter = lisp_filter # Adds default tags unless that it is requested not to do so. if command_args.no_tag: command_args.tag.append('BigMLer') command_args.tag.append('BigMLer_%s' % NOW) # Checks combined votes method if (command_args.method and command_args.method != COMBINATION_LABEL and not (command_args.method in COMBINATION_WEIGHTS.keys())): command_args.method = 0 else: combiner_methods = dict([[value, key] for key, value in COMBINER_MAP.items()]) combiner_methods[COMBINATION_LABEL] = COMBINATION command_args.method = combiner_methods.get(command_args.method, 0) # Checks missing_strategy if (command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys())): command_args.missing_strategy = 0 else: command_args.missing_strategy = MISSING_STRATEGIES.get( command_args.missing_strategy, 0) # Adds replacement=True if creating ensemble and nothing is specified if (command_args.number_of_models > 1 and not command_args.replacement and not '--no-replacement' in flags and not 'replacement' in user_defaults and not '--no-randomize' in flags and not 'randomize' in user_defaults and not '--sample-rate' in flags and not 'sample_rate' in user_defaults): command_args.replacement = True # Old value for --prediction-info='full data' maps to 'full' if command_args.prediction_info == 'full data': print "WARNING: 'full data' is a deprecated value. Use 'full' instead" command_args.prediction_info = FULL_FORMAT # Parses class, weight pairs for objective weight if command_args.objective_weights: objective_weights = ( u.read_objective_weights(command_args.objective_weights)) command_args.objective_weights_json = objective_weights command_args.multi_label_fields_list = [] if command_args.multi_label_fields is not None: multi_label_fields = command_args.multi_label_fields.strip() command_args.multi_label_fields_list = multi_label_fields.split( command_args.args_separator) # Sets shared_flag if --shared or --unshared has been used if '--shared' in flags or '--unshared' in flags: command_args.shared_flag = True else: command_args.shared_flag = False
def transform_args(command_args, flags, api, user_defaults): """Transforms the formatted argument strings into structured arguments """ attribute_args(command_args) # Parses dataset generators in json format if provided if command_args.new_fields: json_generators = u.read_json(command_args.new_fields) command_args.dataset_json_generators = json_generators else: command_args.dataset_json_generators = {} # Parses multi-dataset attributes in json such as field maps if command_args.multi_dataset_attributes: multi_dataset_json = u.read_json(command_args.multi_dataset_attributes) command_args.multi_dataset_json = multi_dataset_json else: command_args.multi_dataset_json = {} transform_dataset_options(command_args, api) # Reads a json filter if provided. if command_args.json_filter: json_filter = u.read_json_filter(command_args.json_filter) command_args.json_filter = json_filter # Reads a lisp filter if provided. if command_args.lisp_filter: lisp_filter = u.read_lisp_filter(command_args.lisp_filter) command_args.lisp_filter = lisp_filter # Adds default tags unless it is requested not to do so. if command_args.no_tag: command_args.tag.append('BigMLer') command_args.tag.append('BigMLer_%s' % NOW) # Checks combined votes method try: if (command_args.method and command_args.method != COMBINATION_LABEL and not (command_args.method in COMBINATION_WEIGHTS.keys())): command_args.method = 0 else: combiner_methods = dict( [[value, key] for key, value in COMBINER_MAP.items()]) combiner_methods[COMBINATION_LABEL] = COMBINATION command_args.method = combiner_methods.get(command_args.method, 0) except AttributeError: pass # Checks missing_strategy try: if (command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys())): command_args.missing_strategy = 0 else: command_args.missing_strategy = MISSING_STRATEGIES.get( command_args.missing_strategy, 0) except AttributeError: pass # Adds replacement=True if creating ensemble and nothing is specified try: if (command_args.number_of_models > 1 and not command_args.replacement and not '--no-replacement' in flags and not 'replacement' in user_defaults and not '--no-randomize' in flags and not 'randomize' in user_defaults and not '--sample-rate' in flags and not 'sample_rate' in user_defaults): command_args.replacement = True except AttributeError: pass try: # Old value for --prediction-info='full data' maps to 'full' if command_args.prediction_info == 'full data': print ("WARNING: 'full data' is a deprecated value. Use" " 'full' instead") command_args.prediction_info = FULL_FORMAT except AttributeError: pass # Parses class, weight pairs for objective weight try: if command_args.objective_weights: objective_weights = ( u.read_objective_weights(command_args.objective_weights)) command_args.objective_weights_json = objective_weights except AttributeError: pass try: command_args.multi_label_fields_list = [] if command_args.multi_label_fields is not None: multi_label_fields = command_args.multi_label_fields.strip() command_args.multi_label_fields_list = multi_label_fields.split( command_args.args_separator) except AttributeError: pass # Sets shared_flag if --shared or --unshared has been used if '--shared' in flags or '--unshared' in flags: command_args.shared_flag = True else: command_args.shared_flag = False # Set remote on if scoring a trainind dataset in bigmler anomaly try: if command_args.score: command_args.remote = True if not "--prediction-info" in flags: command_args.prediction_info = FULL_FORMAT except AttributeError: pass command_args.has_models_ = ( (hasattr(command_args, 'model') and command_args.model) or (hasattr(command_args, 'models') and command_args.models) or (hasattr(command_args, 'ensemble') and command_args.ensemble) or (hasattr(command_args, 'ensembles') and command_args.ensembles) or (hasattr(command_args, 'cluster') and command_args.cluster) or (hasattr(command_args, 'clusters') and command_args.clusters) or (hasattr(command_args, 'model_tag') and command_args.model_tag) or (hasattr(command_args, 'anomaly') and command_args.anomaly) or (hasattr(command_args, 'anomalies') and command_args.anomalies) or (hasattr(command_args, 'ensemble_tag') and command_args.ensemble_tag) or (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag) or (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag)) command_args.has_datasets_ = ( (hasattr(command_args, 'dataset') and command_args.dataset) or (hasattr(command_args, 'datasets') and command_args.datasets) or (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag)) command_args.has_test_datasets_ = ( (hasattr(command_args, 'test_dataset') and command_args.test_dataset) or (hasattr(command_args, 'test_datasets') and command_args.test_datasets) or (hasattr(command_args, 'test_dataset_tag') and command_args.test_dataset_tag))
def transform_args(command_args, flags, api, user_defaults): """Transforms the formatted argument strings into structured arguments """ # Parses attributes in json format if provided command_args.json_args = {} json_attribute_options = { 'source': command_args.source_attributes, 'dataset': command_args.dataset_attributes, 'model': command_args.model_attributes, 'ensemble': command_args.ensemble_attributes, 'evaluation': command_args.evaluation_attributes, 'batch_prediction': command_args.batch_prediction_attributes } for resource_type, attributes_file in json_attribute_options.items(): if attributes_file is not None: command_args.json_args[resource_type] = u.read_json( attributes_file) else: command_args.json_args[resource_type] = {} # Parses dataset generators in json format if provided if command_args.new_fields: json_generators = u.read_json(command_args.new_fields) command_args.dataset_json_generators = json_generators else: command_args.dataset_json_generators = {} # Parses multi-dataset attributes in json such as field maps if command_args.multi_dataset_attributes: multi_dataset_json = u.read_json(command_args.multi_dataset_attributes) command_args.multi_dataset_json = multi_dataset_json else: command_args.multi_dataset_json = {} dataset_ids = None command_args.dataset_ids = [] # Parses dataset/id if provided. if command_args.datasets: dataset_ids = u.read_datasets(command_args.datasets) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids # Retrieve dataset/ids if provided. if command_args.dataset_tag: dataset_ids = dataset_ids.extend( u.list_ids(api.list_datasets, "tags__in=%s" % command_args.dataset_tag)) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids # Reads a json filter if provided. if command_args.json_filter: json_filter = u.read_json_filter(command_args.json_filter) command_args.json_filter = json_filter # Reads a lisp filter if provided. if command_args.lisp_filter: lisp_filter = u.read_lisp_filter(command_args.lisp_filter) command_args.lisp_filter = lisp_filter # Adds default tags unless that it is requested not to do so. if command_args.no_tag: command_args.tag.append('BigMLer') command_args.tag.append('BigMLer_%s' % NOW) # Checks combined votes method if (command_args.method and command_args.method != COMBINATION_LABEL and not (command_args.method in COMBINATION_WEIGHTS.keys())): command_args.method = 0 else: combiner_methods = dict([[value, key] for key, value in COMBINER_MAP.items()]) combiner_methods[COMBINATION_LABEL] = COMBINATION command_args.method = combiner_methods.get(command_args.method, 0) # Checks missing_strategy if (command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys())): command_args.missing_strategy = 0 else: command_args.missing_strategy = MISSING_STRATEGIES.get( command_args.missing_strategy, 0) # Adds replacement=True if creating ensemble and nothing is specified if (command_args.number_of_models > 1 and not command_args.replacement and not '--no-replacement' in flags and not 'replacement' in user_defaults and not '--no-randomize' in flags and not 'randomize' in user_defaults and not '--sample-rate' in flags and not 'sample_rate' in user_defaults): command_args.replacement = True # Old value for --prediction-info='full data' maps to 'full' if command_args.prediction_info == 'full data': print "WARNING: 'full data' is a deprecated value. Use 'full' instead" command_args.prediction_info = FULL_FORMAT # Parses class, weight pairs for objective weight if command_args.objective_weights: objective_weights = (u.read_objective_weights( command_args.objective_weights)) command_args.objective_weights_json = objective_weights command_args.multi_label_fields_list = [] if command_args.multi_label_fields is not None: multi_label_fields = command_args.multi_label_fields.strip() command_args.multi_label_fields_list = multi_label_fields.split(',')
def transform_args(command_args, flags, api): """Transforms the formatted argument strings into structured arguments """ attribute_args(command_args) # Parses dataset generators in json format if provided try: if command_args.new_fields: json_generators = u.read_json(command_args.new_fields) command_args.dataset_json_generators = json_generators else: command_args.dataset_json_generators = {} except AttributeError: pass # Parses multi-dataset attributes in json such as field maps try: if command_args.multi_dataset_attributes: multi_dataset_json = u.read_json( command_args.multi_dataset_attributes) command_args.multi_dataset_json = multi_dataset_json else: command_args.multi_dataset_json = {} except AttributeError: pass transform_dataset_options(command_args, api) script_ids = None command_args.script_ids = [] # Parses script/id if provided. try: if command_args.scripts: script_ids = u.read_resources(command_args.scripts) if len(script_ids) == 1: command_args.script = script_ids[0] command_args.script_ids = script_ids except AttributeError: pass # Retrieve script/ids if provided. try: if command_args.script_tag: script_ids = script_ids.extend( u.list_ids(api.list_scripts, "tags__in=%s" % command_args.script_tag)) if len(script_ids) == 1: command_args.script = script_ids[0] command_args.script_ids = script_ids except AttributeError: pass # Reads a json filter if provided. try: if command_args.json_filter: json_filter = u.read_json_filter(command_args.json_filter) command_args.json_filter = json_filter except AttributeError: pass # Reads a lisp filter if provided. try: if command_args.lisp_filter: lisp_filter = u.read_lisp_filter(command_args.lisp_filter) command_args.lisp_filter = lisp_filter except AttributeError: pass # Adds default tags unless that it is requested not to do so. try: if command_args.no_tag: command_args.tag.append('BigMLer') command_args.tag.append('BigMLer_%s' % NOW) except AttributeError: pass # Checks combined votes method try: if (command_args.method and command_args.method != COMBINATION_LABEL and not command_args.method in COMBINATION_WEIGHTS.keys()): command_args.method = 0 else: combiner_methods = dict( [[value, key] for key, value in COMBINER_MAP.items()]) combiner_methods[COMBINATION_LABEL] = COMBINATION command_args.method = combiner_methods.get(command_args.method, 0) except AttributeError: pass # Checks missing_strategy try: if (command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys())): command_args.missing_strategy = 0 else: command_args.missing_strategy = MISSING_STRATEGIES.get( command_args.missing_strategy, 0) except AttributeError: pass try: # Old value for --prediction-info='full data' maps to 'full' if command_args.prediction_info == 'full data': print ("WARNING: 'full data' is a deprecated value. Use" " 'full' instead") command_args.prediction_info = FULL_FORMAT except AttributeError: pass # Parses class, weight pairs for objective weight try: if command_args.objective_weights: objective_weights = ( u.read_objective_weights(command_args.objective_weights)) command_args.objective_weights_json = objective_weights except AttributeError: pass try: command_args.multi_label_fields_list = [] if command_args.multi_label_fields is not None: multi_label_fields = command_args.multi_label_fields.strip() command_args.multi_label_fields_list = multi_label_fields.split( command_args.args_separator) except AttributeError: pass # Sets shared_flag if --shared or --unshared has been used command_args.shared_flag = '--shared' in flags or '--unshared' in flags # Set remote on if scoring a trainind dataset in bigmler anomaly try: if command_args.score: command_args.remote = True if not "--prediction-info" in flags: command_args.prediction_info = FULL_FORMAT except AttributeError: pass command_args.has_supervised_ = ( (hasattr(command_args, 'model') and command_args.model) or (hasattr(command_args, 'models') and command_args.models) or (hasattr(command_args, 'ensemble') and command_args.ensemble) or (hasattr(command_args, 'ensembles') and command_args.ensembles) or (hasattr(command_args, 'model_tag') and command_args.model_tag) or (hasattr(command_args, 'logistic_regression') and command_args.logistic_regression) or (hasattr(command_args, 'logistic_regressions') and command_args.logistic_regressions) or (hasattr(command_args, 'logistic_regression_tag') and command_args.logistic_regression_tag) or (hasattr(command_args, 'deepnet') and command_args.deepnet) or (hasattr(command_args, 'deepnets') and command_args.deepnets) or (hasattr(command_args, 'deepnet_tag') and command_args.deepnet_tag) or (hasattr(command_args, 'ensemble_tag') and command_args.ensemble_tag)) command_args.has_models_ = ( command_args.has_supervised_ or (hasattr(command_args, 'cluster') and command_args.cluster) or (hasattr(command_args, 'clusters') and command_args.clusters) or (hasattr(command_args, 'anomaly') and command_args.anomaly) or (hasattr(command_args, 'anomalies') and command_args.anomalies) or (hasattr(command_args, 'cluster_tag') and command_args.cluster_tag) or (hasattr(command_args, 'anomaly_tag') and command_args.anomaly_tag)) command_args.has_datasets_ = ( (hasattr(command_args, 'dataset') and command_args.dataset) or (hasattr(command_args, 'datasets') and command_args.datasets) or (hasattr(command_args, 'dataset_tag') and command_args.dataset_tag)) command_args.has_test_datasets_ = ( (hasattr(command_args, 'test_dataset') and command_args.test_dataset) or (hasattr(command_args, 'test_datasets') and command_args.test_datasets) or (hasattr(command_args, 'test_dataset_tag') and command_args.test_dataset_tag))
def get_output_args(api, command_args, resume): """Returns the output args needed for the main bigmler computation process """ try: if command_args.train_stdin: if command_args.test_stdin: sys.exit("The standard input can't be used both for training " "and testing. Choose one of them") command_args.training_set = StringIO(sys.stdin.read()) elif command_args.test_stdin: command_args.test_set = StringIO(sys.stdin.read()) except AttributeError: pass try: if command_args.objective_field: objective = command_args.objective_field try: command_args.objective_field = int(objective) except ValueError: if not command_args.train_header: sys.exit("The %s has been set as objective field but" " the file has not been marked as containing" " headers.\nPlease set the --train-header flag if" " the file has headers or use a column number" " to set the objective field." % objective) except AttributeError: pass command_args.resume_ = resume command_args.predictions = command_args.output # Reads description if provided. try: if command_args.description: description_arg = u.read_description(command_args.description) command_args.description_ = description_arg else: command_args.description_ = DEFAULT_DESCRIPTION except AttributeError: pass # Parses fields if provided. try: if command_args.field_attributes: field_attributes_arg = ( u.read_field_attributes(command_args.field_attributes)) command_args.field_attributes_ = field_attributes_arg else: command_args.field_attributes_ = [] except AttributeError: pass try: if command_args.test_field_attributes: field_attributes_arg = ( u.read_field_attributes(command_args.test_field_attributes)) command_args.test_field_attributes_ = field_attributes_arg else: command_args.test_field_attributes_ = [] except AttributeError: pass # Parses types if provided. try: if command_args.types: types_arg = u.read_types(command_args.types) command_args.types_ = types_arg else: command_args.types_ = None if command_args.test_types: types_arg = u.read_types(command_args.test_types) command_args.test_types_ = types_arg else: command_args.test_types_ = None except AttributeError: pass # Parses dataset fields if provided. try: if command_args.dataset_fields: dataset_fields_arg = [ field.strip() for field in command_args.dataset_fields.split( command_args.args_separator)] command_args.dataset_fields_ = dataset_fields_arg else: command_args.dataset_fields_ = [] except AttributeError: pass # Parses model input fields if provided. try: if command_args.model_fields: model_fields_arg = [ field.strip() for field in command_args.model_fields.split( command_args.args_separator)] command_args.model_fields_ = model_fields_arg else: command_args.model_fields_ = [] except AttributeError: pass # Parses cluster input fields if provided. try: if command_args.cluster_fields: cluster_fields_arg = [ field.strip() for field in command_args.cluster_fields.split( command_args.args_separator)] command_args.cluster_fields_ = cluster_fields_arg else: command_args.cluster_fields_ = [] except AttributeError: pass # Parses association input fields if provided. try: if command_args.association_fields: association_fields_arg = [ field.strip() for field in \ command_args.association_fields.split( \ command_args.args_separator)] command_args.association_fields_ = association_fields_arg else: command_args.association_fields_ = [] except AttributeError: pass # Parses anomaly input fields if provided. try: if command_args.anomaly_fields: anomaly_fields_arg = [ field.strip() for field in command_args.anomaly_fields.split( command_args.args_separator)] command_args.anomaly_fields_ = anomaly_fields_arg else: command_args.anomaly_fields_ = [] except AttributeError: pass # Parses logistic regression input fields if provided. try: if command_args.logistic_fields: logistic_fields_arg = [ field.strip() for field in command_args.logistic_fields.split( command_args.args_separator)] command_args.logistic_fields_ = logistic_fields_arg else: command_args.logistic_fields_ = [] except AttributeError: pass # Parses deepnet input fields if provided. try: if command_args.deepnet_fields: deepnet_fields_arg = [ field.strip() for field in command_args.deepnet_fields.split( command_args.args_separator)] command_args.deepnet_fields_ = deepnet_fields_arg else: command_args.deepnet_fields_ = [] except AttributeError: pass # Parses topic model fields if provided. try: if command_args.topic_fields: topic_fields_arg = [ field.strip() for field in command_args.topic_fields.split( command_args.args_separator)] command_args.topic_model_fields_ = topic_fields_arg else: command_args.topic_model_fields_ = [] except AttributeError: pass # Parses field_codings for deepnet try: if command_args.field_codings: command_args.field_codings_ = u.read_json( command_args.field_codings) else: command_args.field_codings_ = [] except AttributeError: pass # Parses imports for scripts and libraries. try: if command_args.imports: imports_arg = [ field.strip() for field in command_args.imports.split( command_args.args_separator)] command_args.imports_ = imports_arg else: command_args.imports_ = [] except AttributeError: pass # Parses objective fields for time-series. try: if command_args.objectives: objective_fields_arg = [ field.strip() for field in command_args.objectives.split( command_args.args_separator)] command_args.objective_fields_ = objective_fields_arg else: command_args.objective_fields_ = [] except AttributeError: pass # Parses range. try: if command_args.range: range_arg = [ value.strip() for value in command_args.range.split( command_args.args_separator)] command_args.range_ = range_arg else: command_args.range_ = [] except AttributeError: pass # Parses parameters for scripts. try: if command_args.declare_inputs: command_args.parameters_ = u.read_json(command_args.declare_inputs) else: command_args.parameters_ = [] except AttributeError: pass # Parses creation_defaults for executions. try: if command_args.creation_defaults: command_args.creation_defaults_ = u.read_json( command_args.creation_defaults) else: command_args.creation_defaults_ = {} except AttributeError: pass # Parses arguments for executions. try: if command_args.inputs: command_args.arguments_ = u.read_json(command_args.inputs) else: command_args.arguments_ = [] except AttributeError: pass # Parses input maps for executions. try: if command_args.input_maps: command_args.input_maps_ = u.read_json(command_args.input_maps) else: command_args.input_maps_ = [] except AttributeError: pass # Parses outputs for executions. try: if command_args.outputs: command_args.outputs_ = u.read_json(command_args.outputs) else: command_args.outputs_ = [] except AttributeError: pass # Parses outputs for scripts. try: if command_args.declare_outputs: command_args.declare_outputs_ = \ u.read_json(command_args.declare_outputs) else: command_args.declare_outputs_ = [] except AttributeError: pass model_ids = [] try: # Parses model/ids if provided. if command_args.models: model_ids = u.read_resources(command_args.models) command_args.model_ids_ = model_ids except AttributeError: pass # Retrieve model/ids if provided. try: if command_args.model_tag: model_ids = (model_ids + u.list_ids(api.list_models, "tags__in=%s" % command_args.model_tag)) command_args.model_ids_ = model_ids except AttributeError: pass # Reads votes files in the provided directories. try: if command_args.votes_dirs: dirs = [ directory.strip() for directory in command_args.votes_dirs.split( command_args.args_separator)] votes_path = os.path.dirname(command_args.predictions) votes_files = u.read_votes_files(dirs, votes_path) command_args.votes_files_ = votes_files else: command_args.votes_files_ = [] except AttributeError: pass # Parses fields map if provided. try: if command_args.fields_map: fields_map_arg = u.read_fields_map(command_args.fields_map) command_args.fields_map_ = fields_map_arg else: command_args.fields_map_ = None except AttributeError: pass cluster_ids = [] try: # Parses cluster/ids if provided. if command_args.clusters: cluster_ids = u.read_resources(command_args.clusters) command_args.cluster_ids_ = cluster_ids except AttributeError: pass # Retrieve cluster/ids if provided. try: if command_args.cluster_tag: cluster_ids = (cluster_ids + u.list_ids(api.list_clusters, "tags__in=%s" % command_args.cluster_tag)) command_args.cluster_ids_ = cluster_ids except AttributeError: pass association_ids = [] try: # Parses association/ids if provided. if command_args.associations: association_ids = u.read_resources(command_args.associations) command_args.association_ids_ = association_ids except AttributeError: pass # Retrieve association/ids if provided. try: if command_args.association_tag: association_ids = (association_ids + u.list_ids(api.list_associations, "tags__in=%s" % command_args.association_tag)) command_args.association_ids_ = association_ids except AttributeError: pass logistic_regression_ids = [] try: # Parses logisticregression/ids if provided. if command_args.logistic_regressions: logistic_regression_ids = u.read_resources( \ command_args.logistic_regressions) command_args.logistic_regression_ids_ = logistic_regression_ids except AttributeError: pass # Retrieve logsticregression/ids if provided. try: if command_args.logistic_regression_tag: logistic_regression_ids = (logistic_regression_ids + \ u.list_ids(api.list_logistic_regressions, "tags__in=%s" % command_args.logistic_regression_tag)) command_args.logistic_regression_ids_ = logistic_regression_ids except AttributeError: pass deepnet_ids = [] try: # Parses deepnet/ids if provided. if command_args.deepnets: deepnet_ids = u.read_resources( \ command_args.deepnets) command_args.deepnet_ids_ = deepnet_ids except AttributeError: pass # Retrieve deepnet/ids if provided. try: if command_args.deepnet_tag: deepnet_regression_ids = (deepnet_ids + \ u.list_ids(api.list_deepnets, "tags__in=%s" % command_args.deepnet_tag)) command_args.deepnet_ids_ = deepnet_ids except AttributeError: pass topic_model_ids = [] try: # Parses topicmodel/ids if provided. if command_args.topic_models: topic_model_ids = u.read_resources(command_args.topic_models) command_args.topic_model_ids_ = topic_model_ids except AttributeError: pass # Retrieve topicmodel/ids if provided. try: if command_args.topic_model_tag: topic_model_ids = (topic_model_ids + u.list_ids(api.list_topic_models, "tags__in=%s" % command_args.topic_model_tag)) command_args.topic_model_ids_ = topic_model_ids except AttributeError: pass time_series_ids = [] try: # Parses timeseries/ids if provided. if command_args.time_series_set: time_series_ids = u.read_resources(command_args.time_series) command_args.time_series_ids_ = time_series_ids except AttributeError: pass # Retrieve timeseries/ids if provided. try: if command_args.time_series_tag: time_series_ids = (time_series_ids + u.list_ids(api.list_time_series, "tags__in=%s" % command_args.time_series_tag)) command_args.time_series_ids_ = time_series_ids except AttributeError: pass # Parses cluster names to generate datasets if provided try: if command_args.cluster_datasets: cluster_datasets_arg = [ dataset.strip() for dataset in command_args.cluster_datasets.split( command_args.args_separator)] command_args.cluster_datasets_ = cluster_datasets_arg else: command_args.cluster_datasets_ = [] except AttributeError: pass # Parses cluster names to generate models if provided try: if command_args.cluster_models: cluster_models_arg = [ model.strip() for model in command_args.cluster_models.split( command_args.args_separator)] command_args.cluster_models_ = cluster_models_arg else: command_args.cluster_models_ = [] except AttributeError: pass # Parses summary_fields to exclude from the clustering algorithm try: if command_args.summary_fields: summary_fields_arg = [ field.strip() for field in command_args.summary_fields.split( command_args.args_separator)] command_args.summary_fields_ = summary_fields_arg else: command_args.summary_fields_ = [] except AttributeError: pass anomaly_ids = [] try: # Parses anomaly/ids if provided. if command_args.anomalies: anomaly_ids = u.read_resources(command_args.anomalies) command_args.anomaly_ids_ = anomaly_ids except AttributeError: pass # Retrieve anomaly/ids if provided. try: if command_args.anomaly_tag: anomaly_ids = (anomaly_ids + u.list_ids(api.list_anomalies, "tags__in=%s" % command_args.anomaly_tag)) command_args.anomaly_ids_ = anomaly_ids except AttributeError: pass sample_ids = [] try: # Parses sample/ids if provided. if command_args.samples: sample_ids = u.read_resources(command_args.samples) command_args.sample_ids_ = sample_ids except AttributeError: pass # Retrieve sample/ids if provided. try: if command_args.sample_tag: sample_ids = ( sample_ids + u.list_ids(api.list_samples, "tags__in=%s" % command_args.sample_tag)) command_args.sample_ids_ = sample_ids except AttributeError: pass # Parses sample row fields try: if command_args.row_fields: row_fields_arg = [field.strip() for field in command_args.row_fields.split( command_args.args_separator)] command_args.row_fields_ = row_fields_arg else: command_args.row_fields_ = [] except AttributeError: pass # Parses sample stat_fields try: if command_args.stat_fields: stat_fields_arg = [field.strip() for field in command_args.stat_fields.split( command_args.args_separator)] command_args.stat_fields_ = stat_fields_arg else: command_args.stat_fields_ = [] except AttributeError: pass # if boosting arguments are used, set on boosting try: if command_args.iterations or command_args.learning_rate \ or command_args.early_holdout: command_args.boosting = True except AttributeError: pass # Extracts the imports from the JSON metadata file try: if command_args.embedded_imports: command_args.embedded_imports_ = u.read_resources( \ command_args.embedded_imports) else: command_args.embedded_imports_ = [] except AttributeError: pass # Parses hidden_layers for deepnets. try: if command_args.hidden_layers: command_args.hidden_layers_ = u.read_json( command_args.hidden_layers) else: command_args.hidden_layers_ = [] except AttributeError: pass # Parses operating_point for predictions. try: if command_args.operating_point: command_args.operating_point_ = u.read_json( command_args.operating_point) else: command_args.operating_point_ = [] except AttributeError: pass return {"api": api, "args": command_args}
def get_output_args(api, command_args, resume): """Returns the output args needed for the main bigmler computation process """ try: if command_args.train_stdin: if command_args.test_stdin: sys.exit("The standard input can't be used both for training " "and testing. Choose one of them") command_args.training_set = StringIO(sys.stdin.read()) elif command_args.test_stdin: command_args.test_set = StringIO(sys.stdin.read()) except AttributeError: pass try: if command_args.objective_field: objective = command_args.objective_field try: command_args.objective_field = int(objective) except ValueError: if not command_args.train_header: sys.exit("The %s has been set as objective field but" " the file has not been marked as containing" " headers.\nPlease set the --train-header flag if" " the file has headers or use a column number" " to set the objective field." % objective) except AttributeError: pass command_args.resume_ = resume # Reads description if provided. try: if command_args.description: description_arg = u.read_description(command_args.description) command_args.description_ = description_arg else: command_args.description_ = DEFAULT_DESCRIPTION except AttributeError: pass # Parses fields if provided. try: if command_args.field_attributes: field_attributes_arg = (u.read_field_attributes( command_args.field_attributes)) command_args.field_attributes_ = field_attributes_arg else: command_args.field_attributes_ = [] except AttributeError: pass try: if command_args.test_field_attributes: field_attributes_arg = (u.read_field_attributes( command_args.test_field_attributes)) command_args.test_field_attributes_ = field_attributes_arg else: command_args.test_field_attributes_ = [] except AttributeError: pass # Parses types if provided. try: if command_args.types: types_arg = u.read_types(command_args.types) command_args.types_ = types_arg else: command_args.types_ = None if command_args.test_types: types_arg = u.read_types(command_args.test_types) command_args.test_types_ = types_arg else: command_args.test_types_ = None except AttributeError: pass # Parses dataset fields if provided. try: if command_args.dataset_fields: dataset_fields_arg = [ field.strip() for field in command_args.dataset_fields.split( command_args.args_separator) ] command_args.dataset_fields_ = dataset_fields_arg else: command_args.dataset_fields_ = [] except AttributeError: pass # Parses model input fields if provided. try: if command_args.model_fields: model_fields_arg = [ field.strip() for field in command_args.model_fields.split( command_args.args_separator) ] command_args.model_fields_ = model_fields_arg else: command_args.model_fields_ = [] except AttributeError: pass # Parses cluster input fields if provided. try: if command_args.cluster_fields: cluster_fields_arg = [ field.strip() for field in command_args.cluster_fields.split( command_args.args_separator) ] command_args.cluster_fields_ = cluster_fields_arg else: command_args.cluster_fields_ = [] except AttributeError: pass # Parses association input fields if provided. try: if command_args.association_fields: association_fields_arg = [ field.strip() for field in \ command_args.association_fields.split( \ command_args.args_separator)] command_args.association_fields_ = association_fields_arg else: command_args.association_fields_ = [] except AttributeError: pass # Parses anomaly input fields if provided. try: if command_args.anomaly_fields: anomaly_fields_arg = [ field.strip() for field in command_args.anomaly_fields.split( command_args.args_separator) ] command_args.anomaly_fields_ = anomaly_fields_arg else: command_args.anomaly_fields_ = [] except AttributeError: pass # Parses logistic regression input fields if provided. try: if command_args.logistic_fields: logistic_fields_arg = [ field.strip() for field in command_args.logistic_fields.split( command_args.args_separator) ] command_args.logistic_fields_ = logistic_fields_arg else: command_args.logistic_fields_ = [] except AttributeError: pass # Parses field_codings for logistic regressions try: if command_args.field_codings: command_args.field_codings_ = u.read_json( command_args.field_codings) else: command_args.field_codings_ = [] except AttributeError: pass # Parses imports for scripts and libraries. try: if command_args.imports: imports_arg = [ field.strip() for field in command_args.imports.split( command_args.args_separator) ] command_args.imports_ = imports_arg else: command_args.imports_ = [] except AttributeError: pass # Parses parameters for scripts. try: if command_args.declare_inputs: command_args.parameters_ = u.read_json(command_args.declare_inputs) else: command_args.parameters_ = [] except AttributeError: pass # Parses creation_defaults for executions. try: if command_args.creation_defaults: command_args.creation_defaults_ = u.read_json( command_args.creation_defaults) else: command_args.creation_defaults_ = {} except AttributeError: pass # Parses arguments for executions. try: if command_args.inputs: command_args.arguments_ = u.read_json(command_args.inputs) else: command_args.arguments_ = [] except AttributeError: pass # Parses input maps for executions. try: if command_args.input_maps: command_args.input_maps_ = u.read_json(command_args.input_maps) else: command_args.input_maps_ = [] except AttributeError: pass # Parses outputs for executions. try: if command_args.outputs: command_args.outputs_ = u.read_json(command_args.outputs) else: command_args.outputs_ = [] except AttributeError: pass # Parses outputs for scripts. try: if command_args.declare_outputs: command_args.declare_outputs_ = \ u.read_json(command_args.declare_outputs) else: command_args.declare_outputs_ = [] except AttributeError: pass model_ids = [] try: # Parses model/ids if provided. if command_args.models: model_ids = u.read_resources(command_args.models) command_args.model_ids_ = model_ids except AttributeError: pass # Retrieve model/ids if provided. try: if command_args.model_tag: model_ids = (model_ids + u.list_ids( api.list_models, "tags__in=%s" % command_args.model_tag)) command_args.model_ids_ = model_ids except AttributeError: pass # Reads votes files in the provided directories. try: if command_args.votes_dirs: dirs = [ directory.strip() for directory in command_args.votes_dirs.split(command_args.args_separator) ] votes_path = os.path.dirname(command_args.predictions) votes_files = u.read_votes_files(dirs, votes_path) command_args.votes_files_ = votes_files else: command_args.votes_files_ = [] except AttributeError: pass # Parses fields map if provided. try: if command_args.fields_map: fields_map_arg = u.read_fields_map(command_args.fields_map) command_args.fields_map_ = fields_map_arg else: command_args.fields_map_ = None except AttributeError: pass cluster_ids = [] try: # Parses cluster/ids if provided. if command_args.clusters: cluster_ids = u.read_resources(command_args.clusters) command_args.cluster_ids_ = cluster_ids except AttributeError: pass # Retrieve cluster/ids if provided. try: if command_args.cluster_tag: cluster_ids = (cluster_ids + u.list_ids( api.list_clusters, "tags__in=%s" % command_args.cluster_tag)) command_args.cluster_ids_ = cluster_ids except AttributeError: pass association_ids = [] try: # Parses association/ids if provided. if command_args.associations: association_ids = u.read_resources(command_args.associations) command_args.association_ids_ = association_ids except AttributeError: pass # Retrieve cluster/ids if provided. try: if command_args.association_tag: association_ids = ( association_ids + u.list_ids(api.list_associations, "tags__in=%s" % command_args.association_tag)) command_args.association_ids_ = association_ids except AttributeError: pass logistic_regression_ids = [] try: # Parses logisticregression/ids if provided. if command_args.logistic_regressions: logistic_regression_ids = u.read_resources( \ command_args.logistic_regressions) command_args.logistic_regression_ids_ = logistic_regression_ids except AttributeError: pass # Retrieve logisticregression/ids if provided. try: if command_args.logistic_tag: logistic_regression_ids = ( logistic_ids + u.list_ids(api.list_logistic_regressions, "tags__in=%s" % command_args.logistic_tag)) command_args.logistic_regression_ids_ = logistic_regression_ids except AttributeError: pass # Parses cluster names to generate datasets if provided try: if command_args.cluster_datasets: cluster_datasets_arg = [ dataset.strip() for dataset in command_args.cluster_datasets.split( command_args.args_separator) ] command_args.cluster_datasets_ = cluster_datasets_arg else: command_args.cluster_datasets_ = [] except AttributeError: pass # Parses cluster names to generate models if provided try: if command_args.cluster_models: cluster_models_arg = [ model.strip() for model in command_args.cluster_models.split( command_args.args_separator) ] command_args.cluster_models_ = cluster_models_arg else: command_args.cluster_models_ = [] except AttributeError: pass # Parses summary_fields to exclude from the clustering algorithm try: if command_args.summary_fields: summary_fields_arg = [ field.strip() for field in command_args.summary_fields.split( command_args.args_separator) ] command_args.summary_fields_ = summary_fields_arg else: command_args.summary_fields_ = [] except AttributeError: pass anomaly_ids = [] try: # Parses anomaly/ids if provided. if command_args.anomalies: anomaly_ids = u.read_resources(command_args.anomalies) command_args.anomaly_ids_ = anomaly_ids except AttributeError: pass # Retrieve anomaly/ids if provided. try: if command_args.anomaly_tag: anomaly_ids = (anomaly_ids + u.list_ids( api.list_anomalies, "tags__in=%s" % command_args.anomaly_tag)) command_args.anomaly_ids_ = anomaly_ids except AttributeError: pass sample_ids = [] try: # Parses sample/ids if provided. if command_args.samples: sample_ids = u.read_resources(command_args.samples) command_args.sample_ids_ = sample_ids except AttributeError: pass # Retrieve sample/ids if provided. try: if command_args.sample_tag: sample_ids = (sample_ids + u.list_ids( api.list_samples, "tags__in=%s" % command_args.sample_tag)) command_args.sample_ids_ = sample_ids except AttributeError: pass # Parses sample row fields try: if command_args.row_fields: row_fields_arg = [ field.strip() for field in command_args.row_fields.split( command_args.args_separator) ] command_args.row_fields_ = row_fields_arg else: command_args.row_fields_ = [] except AttributeError: pass # Parses sample stat_fields try: if command_args.stat_fields: stat_fields_arg = [ field.strip() for field in command_args.stat_fields.split( command_args.args_separator) ] command_args.stat_fields_ = stat_fields_arg else: command_args.stat_fields_ = [] except AttributeError: pass return {"api": api, "args": command_args}
def transform_args(command_args, flags, api, user_defaults): """Transforms the formatted argument strings into structured arguments """ # Parses attributes in json format if provided command_args.json_args = {} for resource_type in RESOURCE_TYPES: attributes_file = getattr(command_args, "%s_attributes" % resource_type, None) if attributes_file is not None: command_args.json_args[resource_type] = u.read_json(attributes_file) else: command_args.json_args[resource_type] = {} # Parses dataset generators in json format if provided if command_args.new_fields: json_generators = u.read_json(command_args.new_fields) command_args.dataset_json_generators = json_generators else: command_args.dataset_json_generators = {} # Parses multi-dataset attributes in json such as field maps if command_args.multi_dataset_attributes: multi_dataset_json = u.read_json(command_args.multi_dataset_attributes) command_args.multi_dataset_json = multi_dataset_json else: command_args.multi_dataset_json = {} dataset_ids = None command_args.dataset_ids = [] # Parses dataset/id if provided. if command_args.datasets: dataset_ids = u.read_datasets(command_args.datasets) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids test_dataset_ids = None command_args.test_dataset_ids = [] # Parses dataset/id if provided. if command_args.test_datasets: test_dataset_ids = u.read_datasets(command_args.test_datasets) command_args.test_dataset_ids = test_dataset_ids # Retrieve dataset/ids if provided. if command_args.dataset_tag: dataset_ids = dataset_ids.extend(u.list_ids(api.list_datasets, "tags__in=%s" % command_args.dataset_tag)) if len(dataset_ids) == 1: command_args.dataset = dataset_ids[0] command_args.dataset_ids = dataset_ids # Reads a json filter if provided. if command_args.json_filter: json_filter = u.read_json_filter(command_args.json_filter) command_args.json_filter = json_filter # Reads a lisp filter if provided. if command_args.lisp_filter: lisp_filter = u.read_lisp_filter(command_args.lisp_filter) command_args.lisp_filter = lisp_filter # Adds default tags unless that it is requested not to do so. if command_args.no_tag: command_args.tag.append("BigMLer") command_args.tag.append("BigMLer_%s" % NOW) # Checks combined votes method try: if ( command_args.method and command_args.method != COMBINATION_LABEL and not (command_args.method in COMBINATION_WEIGHTS.keys()) ): command_args.method = 0 else: combiner_methods = dict([[value, key] for key, value in COMBINER_MAP.items()]) combiner_methods[COMBINATION_LABEL] = COMBINATION command_args.method = combiner_methods.get(command_args.method, 0) except AttributeError: pass # Checks missing_strategy try: if command_args.missing_strategy and not (command_args.missing_strategy in MISSING_STRATEGIES.keys()): command_args.missing_strategy = 0 else: command_args.missing_strategy = MISSING_STRATEGIES.get(command_args.missing_strategy, 0) except AttributeError: pass # Adds replacement=True if creating ensemble and nothing is specified try: if ( command_args.number_of_models > 1 and not command_args.replacement and not "--no-replacement" in flags and not "replacement" in user_defaults and not "--no-randomize" in flags and not "randomize" in user_defaults and not "--sample-rate" in flags and not "sample_rate" in user_defaults ): command_args.replacement = True except AttributeError: pass # Old value for --prediction-info='full data' maps to 'full' if command_args.prediction_info == "full data": print "WARNING: 'full data' is a deprecated value. Use 'full' instead" command_args.prediction_info = FULL_FORMAT # Parses class, weight pairs for objective weight try: if command_args.objective_weights: objective_weights = u.read_objective_weights(command_args.objective_weights) command_args.objective_weights_json = objective_weights except AttributeError: pass try: command_args.multi_label_fields_list = [] if command_args.multi_label_fields is not None: multi_label_fields = command_args.multi_label_fields.strip() command_args.multi_label_fields_list = multi_label_fields.split(command_args.args_separator) except AttributeError: pass # Sets shared_flag if --shared or --unshared has been used if "--shared" in flags or "--unshared" in flags: command_args.shared_flag = True else: command_args.shared_flag = False command_args.has_models_ = ( (hasattr(command_args, "model") and command_args.model) or (hasattr(command_args, "models") and command_args.models) or (hasattr(command_args, "ensemble") and command_args.ensemble) or (hasattr(command_args, "ensembles") and command_args.ensembles) or (hasattr(command_args, "cluster") and command_args.cluster) or (hasattr(command_args, "clusters") and command_args.clusters) or (hasattr(command_args, "model_tag") and command_args.model_tag) or (hasattr(command_args, "anomaly") and command_args.anomaly) or (hasattr(command_args, "anomalies") and command_args.anomalies) or (hasattr(command_args, "ensemble_tag") and command_args.ensemble_tag) or (hasattr(command_args, "cluster_tag") and command_args.cluster_tag) or (hasattr(command_args, "anomaly_tag") and command_args.anomaly_tag) ) command_args.has_datasets_ = ( (hasattr(command_args, "dataset") and command_args.dataset) or (hasattr(command_args, "datasets") and command_args.datasets) or (hasattr(command_args, "dataset_tag") and command_args.dataset_tag) )