示例#1
0
        for gcn in self.gcns:
            x = gcn(x, edge_index)
            x = F.relu(x)
        x, _, _, batch, _, _ = self.graph_pooling(x, edge_index, None, batch)
        x = global_max_pool(x, batch)
        outputs = self.dense(x)
        outputs = F.relu(outputs)
        outputs = self.out(outputs)
        return outputs

model = Model(dataset.item_num, 2)
opt = optim.SGD(model.parameters(), lr=0.5)


# 3. learner
learner = Learner(model, opt, F.cross_entropy, train_db, metrics=[accuracy])

# 4. fit
learner.fit(3)

# 5. test
learner.test(test_dl)

# 6. predict
pred = learner.predict(test_dl)
print(pred.size())

# 7. plot
learner.recorder.plot_metrics()
plt.show()
        self.conv2 = GCNConv(16, class_num)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        outputs = F.relu(x)
        return outputs

model = Model(dataset.num_node_features, dataset.num_classes)
opt = optim.SGD(model.parameters(), lr=0.5, weight_decay=0.01)


# 3. learner
learner = Learner(model, opt, masked_cross_entropy, data, metrics=[masked_accuracy])

# 4. fit
learner.fit(100)

# 5. test
learner.test(test_data)

# 6. predict
pred = learner.predict(dataset[0])
print(pred.size())

# 7. plot
learner.recorder.plot_metrics()
plt.show()