示例#1
0
 def __init__(self):
     super(Net, self).__init__()
     self.conv1 = BinarizeConv2d(1, 4, stride=2, kernel_size=3, bias=False)
     self.conv2 = BinarizeConv2d(4, 8, stride=2, kernel_size=3, bias=False)
     self.conv3 = BinarizeConv2d(8, 16, stride=2, kernel_size=3, bias=False)
     self.fc1 = BinarizeLinear(16, 8, bias=False)
     self.fc2 = BinarizeLinear(8, 1, bias=False)
示例#2
0
    def __init__(self):
        super(Net, self).__init__()

        self.bn0 = nn.BatchNorm1d(784)
        self.bin0 = BinarizeSign()

        self.fc1 = BinarizeLinear(784, 200)
        self.htanh1 = nn.Hardtanh()
        self.bn1 = nn.BatchNorm1d(200)
        self.bin1 = BinarizeSign()

        self.fc2 = BinarizeLinear(200, 100)
        self.htanh2 = nn.Hardtanh()
        self.bn2 = nn.BatchNorm1d(100)
        self.bin2 = BinarizeSign()

        self.fc3 = BinarizeLinear(100, 100)
        self.htanh3 = nn.Hardtanh()
        self.bn3 = nn.BatchNorm1d(100)
        self.bin3 = BinarizeSign()

        self.fc4 = BinarizeLinear(100, 100)
        self.htanh4 = nn.Hardtanh()
        self.bn4 = nn.BatchNorm1d(100)
        self.bin4 = BinarizeSign()

        self.fc5 = BinarizeLinear(100, 10)
        self.logsoftmax = nn.LogSoftmax(1)
示例#3
0
 def __init__(self):
     super(BinarizedCifar10MLP, self).__init__()
     self.fc = nn.Sequential(BinarizeLinear(3 * 32 * 32, 2048),
                             nn.BatchNorm1d(2048), nn.Hardtanh(),
                             BinarizeLinear(2048, 2048),
                             nn.BatchNorm1d(2048), nn.Hardtanh(),
                             BinarizeLinear(2048, 2048), nn.Dropout(0.5),
                             nn.BatchNorm1d(2048), nn.Hardtanh(),
                             nn.Linear(2048, 10), nn.LogSoftmax())
示例#4
0
    def __init__(self, num_classes=10, block=BasicBlock, depth=18):
        super(ResNet_fashionmnist, self).__init__()
        self.inflate = 5
        self.inplanes = 16 * self.inflate
        n = int((depth - 2) / 6)
        self.conv1 = BinarizeConv2d(1,
                                    16 * self.inflate,
                                    kernel_size=3,
                                    stride=1,
                                    padding=1,
                                    bias=False)
        self.maxpool = lambda x: x
        self.bn1 = nn.BatchNorm2d(16 * self.inflate)
        # self.tanh1 = nn.Hardtanh(inplace=True)
        self.tanh1 = nn.Hardtanh()
        # self.tanh2 = nn.Hardtanh(inplace=True)
        self.tanh2 = nn.Hardtanh()
        self.layer1 = self._make_layer(block, 16 * self.inflate, n)
        self.layer2 = self._make_layer(block, 32 * self.inflate, n, stride=2)
        self.layer3 = self._make_layer(block,
                                       64 * self.inflate,
                                       n,
                                       stride=2,
                                       do_bntan=False)
        self.layer4 = lambda x: x
        self.avgpool = nn.AvgPool2d(8)
        self.bn2 = nn.BatchNorm1d(64 * self.inflate)
        self.bn3 = nn.BatchNorm1d(10)
        self.logsoftmax = nn.LogSoftmax()
        self.fc = BinarizeLinear(64 * self.inflate, num_classes)

        init_model(self)
        #self.regime = {
        #    0: {'optimizer': 'SGD', 'lr': 1e-1,
        #        'weight_decay': 1e-4, 'momentum': 0.9},
        #    81: {'lr': 1e-4},
        #    122: {'lr': 1e-5, 'weight_decay': 0},
        #    164: {'lr': 1e-6}
        #}
        self.regime = {
            0: {
                'optimizer': 'Adam',
                'lr': 1e-3,
                'weight_decay': 1e-5
            },
            101: {
                'lr': 1e-3
            },
            142: {
                'lr': 5e-4
            },
            184: {
                'lr': 1e-4
            },
            220: {
                'lr': 1e-5
            }
        }
示例#5
0
    def __init__(self):
        super(BinarizedLeNet5Cifar10, self).__init__()
        self.features = nn.Sequential(
            BinarizeConv2d(3, 32, kernel_size=3,
                           padding=1),  # out_dim= 32 * 32 * 32
            nn.MaxPool2d(2, 2),  # out_dim= 16 * 16 * 32
            nn.BatchNorm2d(32),
            nn.Hardtanh(),
            BinarizeConv2d(32, 64, kernel_size=3,
                           padding=1),  # out_dim= 16 * 16 * 64
            nn.MaxPool2d(2, 2),  # out_dim= 8 * 8 * 64
            nn.BatchNorm2d(64),
            nn.Hardtanh())

        self.classifier = nn.Sequential(BinarizeLinear(8 * 8 * 64, 512),
                                        nn.BatchNorm1d(512), nn.Hardtanh(),
                                        BinarizeLinear(512, 256),
                                        nn.BatchNorm1d(256), nn.Hardtanh(),
                                        nn.Linear(256, 10), nn.LogSoftmax())
    def __init__(self):
        super(BinAlexNet, self).__init__()
        self.features = nn.Sequential(
            BinarizeConv2d(3, 64, kernel_size=5, padding=1, bias=False),  # out dim = 64*30*30
            nn.MaxPool2d(kernel_size=2, stride=2),  # out dim = 64 * 15* 15
            nn.BatchNorm2d(64),
            nn.Hardtanh(),

            BinarizeConv2d(64, 192, kernel_size=5, padding=1, bias=False),  # out dim = 192 * 13 * 13
            nn.MaxPool2d(kernel_size=2, stride=2),  # out dim = 192 * 6 * 6
            nn.BatchNorm2d(192),
            nn.Hardtanh(inplace=True),

            BinarizeConv2d(192, 384, kernel_size=3, padding=1, bias=False),  # out dim = 384 * 6 * 6
            nn.BatchNorm2d(384),
            nn.Hardtanh(),

            BinarizeConv2d(384, 256, kernel_size=3, padding=1, bias=False),  # out dim = 256 * 6 * 6
            nn.BatchNorm2d(256),
            nn.Hardtanh(),

            BinarizeConv2d(256, 256, kernel_size=3, padding=1, bias=False),  # out dim = 256 * 6 * 6
            nn.MaxPool2d(kernel_size=3, stride=2),  # out dim = 256 * 4 * 4
            nn.BatchNorm2d(256),
            nn.Hardtanh()
        )

        self.classifier = nn.Sequential(
            BinarizeLinear(256 * 2 * 2, 4096, bias=False),
            nn.BatchNorm1d(4096),
            nn.Hardtanh(),
            # nn.Dropout(0.5),

            BinarizeLinear(4096, 2048, bias=False),
            nn.BatchNorm1d(2048),
            nn.Hardtanh(),
            # nn.Dropout(0.5),

            BinarizeLinear(2048, 10)
        )
示例#7
0
    def __init__(self,
                 num_classes=1000,
                 block=Bottleneck,
                 layers=[3, 4, 23, 3]):
        super(ResNet_imagenet, self).__init__()
        self.inplanes = 64
        self.conv1 = BinarizeConv2d(3,
                                    64,
                                    kernel_size=7,
                                    stride=2,
                                    padding=3,
                                    bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        # self.tanh = nn.Hardtanh(inplace=True)
        self.tanh = nn.Hardtanh()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = BinarizeLinear(512 * block.expansion, num_classes)

        init_model(self)
        self.regime = {
            0: {
                'optimizer': 'SGD',
                'lr': 1e-1,
                'weight_decay': 1e-4,
                'momentum': 0.9
            },
            30: {
                'lr': 1e-2
            },
            60: {
                'lr': 1e-3,
                'weight_decay': 0
            },
            90: {
                'lr': 1e-4
            }
        }