def test_add_objects(self): network = Network(dt=1.0) inpt = Input(100); network.add_layer(inpt, name='X') lif = LIFNodes(50); network.add_layer(lif, name='Y') assert inpt == network.layers['X'] assert lif == network.layers['Y'] conn = Connection(inpt, lif); network.add_connection(conn, source='X', target='Y') assert conn == network.connections[('X', 'Y')] monitor = Monitor(lif, state_vars=['s', 'v']); network.add_monitor(monitor, 'Y') assert monitor == network.monitors['Y']
def test_rmax(self): # Connection test network = Network(dt=1.0) network.add_layer(Input(n=100, traces=True, traces_additive=True), name='input') network.add_layer(SRM0Nodes(n=100), name='output') network.add_connection(Connection(source=network.layers['input'], target=network.layers['output'], nu=1e-2, update_rule=Rmax), source='input', target='output') network.run( inpts={'input': torch.bernoulli(torch.rand(250, 100)).byte()}, time=250, reward=1.)
def BindsNET_cpu(n_neurons, time): t0 = t() torch.set_default_tensor_type('torch.FloatTensor') t1 = t() network = Network() network.add_layer(Input(n=n_neurons), name='X') network.add_layer(LIFNodes(n=n_neurons), name='Y') network.add_connection(Connection(source=network.layers['X'], target=network.layers['Y']), source='X', target='Y') data = {'X': poisson(datum=torch.rand(n_neurons), time=time)} network.run(inpts=data, time=time) return t() - t0, t() - t1
def test_init(self): network = Network() for i, nodes in enumerate( [ Input, McCullochPitts, IFNodes, LIFNodes, AdaptiveLIFNodes, SRM0Nodes, ] ): for n in [1, 100, 10000]: layer = nodes(n) network.add_layer(layer=layer, name=f"{i}_{n}") assert layer.n == n assert (layer.s.float() == torch.zeros(n)).all() if nodes in [LIFNodes, AdaptiveLIFNodes]: assert (layer.v == layer.rest * torch.ones(n)).all() layer = nodes(n, traces=True, tc_trace=1e5) network.add_layer(layer=layer, name=f"{i}_traces_{n}") assert layer.n == n assert layer.tc_trace == 1e5 assert (layer.s.float() == torch.zeros(n)).all() assert (layer.x == torch.zeros(n)).all() assert (layer.x == torch.zeros(n)).all() if nodes in [LIFNodes, AdaptiveLIFNodes, SRM0Nodes]: assert (layer.v == layer.rest * torch.ones(n)).all() for nodes in [LIFNodes, AdaptiveLIFNodes]: for n in [1, 100, 10000]: layer = nodes( n, rest=0.0, reset=-10.0, thresh=10.0, refrac=3, tc_decay=1.5e3, ) network.add_layer(layer=layer, name=f"{i}_params_{n}") assert layer.rest == 0.0 assert layer.reset == -10.0 assert layer.thresh == 10.0 assert layer.refrac == 3 assert layer.tc_decay == 1.5e3 assert (layer.s.float() == torch.zeros(n)).all() assert (layer.v == layer.rest * torch.ones(n)).all()
def BindsNET_cpu(n_neurons, time): t0 = t() torch.set_default_tensor_type("torch.FloatTensor") t1 = t() network = Network() network.add_layer(Input(n=n_neurons), name="X") network.add_layer(LIFNodes(n=n_neurons), name="Y") network.add_connection( Connection(source=network.layers["X"], target=network.layers["Y"]), source="X", target="Y", ) data = {"X": poisson(datum=torch.rand(n_neurons), time=time)} network.run(inputs=data, time=time) return t() - t0, t() - t1
def test_empty(self): for dt in [0.1, 1.0, 5.0]: network = Network(dt=dt) assert network.dt == dt network.run(inpts={}, time=1000) network.save('net.p') _network = load_network('net.p') assert _network.dt == dt os.remove('net.p')
def __init__( self, environment: GymEnvironment, method: str = 'first_spike', dt: float = 1.0, learning: bool = True, reward_fn: AbstractReward = None, allow_gpu: bool = True, ) -> None: super().__init__(environment, allow_gpu) self.method = method self.network = Network(dt=dt, learning=learning, reward_fn=reward_fn) if self.method == 'first_spike': self.random_counter = 0
class TestMonitor: """ Testing Monitor object. """ network = Network() inpt = Input(75) network.add_layer(inpt, name="X") _if = IFNodes(25) network.add_layer(_if, name="Y") conn = Connection(inpt, _if, w=torch.rand(inpt.n, _if.n)) network.add_connection(conn, source="X", target="Y") inpt_mon = Monitor(inpt, state_vars=["s"]) network.add_monitor(inpt_mon, name="X") _if_mon = Monitor(_if, state_vars=["s", "v"]) network.add_monitor(_if_mon, name="Y") network.run( inputs={"X": torch.bernoulli(torch.rand(100, inpt.n))}, time=100 ) assert inpt_mon.get("s").size() == torch.Size([100, 1, inpt.n]) assert _if_mon.get("s").size() == torch.Size([100, 1, _if.n]) assert _if_mon.get("v").size() == torch.Size([100, 1, _if.n]) del network.monitors["X"], network.monitors["Y"] inpt_mon = Monitor(inpt, state_vars=["s"], time=500) network.add_monitor(inpt_mon, name="X") _if_mon = Monitor(_if, state_vars=["s", "v"], time=500) network.add_monitor(_if_mon, name="Y") network.run( inputs={"X": torch.bernoulli(torch.rand(500, inpt.n))}, time=500 ) assert inpt_mon.get("s").size() == torch.Size([500, 1, inpt.n]) assert _if_mon.get("s").size() == torch.Size([500, 1, _if.n]) assert _if_mon.get("v").size() == torch.Size([500, 1, _if.n])
class TestMonitor: """ Testing Monitor object. """ network = Network() inpt = Input(75) network.add_layer(inpt, name='X') _if = IFNodes(25) network.add_layer(_if, name='Y') conn = Connection(inpt, _if, w=torch.rand(inpt.n, _if.n)) network.add_connection(conn, source='X', target='Y') inpt_mon = Monitor(inpt, state_vars=['s']) network.add_monitor(inpt_mon, name='X') _if_mon = Monitor(_if, state_vars=['s', 'v']) network.add_monitor(_if_mon, name='Y') network.run(inpts={'X': torch.bernoulli(torch.rand(100, inpt.n))}, time=100) assert inpt_mon.get('s').size() == torch.Size([inpt.n, 100]) assert _if_mon.get('s').size() == torch.Size([_if.n, 100]) assert _if_mon.get('v').size() == torch.Size([_if.n, 100]) del network.monitors['X'], network.monitors['Y'] inpt_mon = Monitor(inpt, state_vars=['s'], time=500) network.add_monitor(inpt_mon, name='X') _if_mon = Monitor(_if, state_vars=['s', 'v'], time=500) network.add_monitor(_if_mon, name='Y') network.run(inpts={'X': torch.bernoulli(torch.rand(500, inpt.n))}, time=500) assert inpt_mon.get('s').size() == torch.Size([inpt.n, 500]) assert _if_mon.get('s').size() == torch.Size([_if.n, 500]) assert _if_mon.get('v').size() == torch.Size([_if.n, 500])
class TestNetworkMonitor: """ Testing NetworkMonitor object. """ network = Network() inpt = Input(25) network.add_layer(inpt, name="X") _if = IFNodes(75) network.add_layer(_if, name="Y") conn = Connection(inpt, _if, w=torch.rand(inpt.n, _if.n)) network.add_connection(conn, source="X", target="Y") mon = NetworkMonitor(network, state_vars=["s", "v", "w"]) network.add_monitor(mon, name="monitor") network.run(inputs={"X": torch.bernoulli(torch.rand(50, inpt.n))}, time=50) recording = mon.get() assert recording["X"]["s"].size() == torch.Size([50, 1, inpt.n]) assert recording["Y"]["s"].size() == torch.Size([50, 1, _if.n]) assert recording["Y"]["s"].size() == torch.Size([50, 1, _if.n]) del network.monitors["monitor"] mon = NetworkMonitor(network, state_vars=["s", "v", "w"], time=50) network.add_monitor(mon, name="monitor") network.run(inputs={"X": torch.bernoulli(torch.rand(50, inpt.n))}, time=50) recording = mon.get() assert recording["X"]["s"].size() == torch.Size([50, 1, inpt.n]) assert recording["Y"]["s"].size() == torch.Size([50, 1, _if.n]) assert recording["Y"]["s"].size() == torch.Size([50, 1, _if.n])
class TestNetworkMonitor: """ Testing NetworkMonitor object. """ network = Network() inpt = Input(25) network.add_layer(inpt, name='X') _if = IFNodes(75) network.add_layer(_if, name='Y') conn = Connection(inpt, _if, w=torch.rand(inpt.n, _if.n)) network.add_connection(conn, source='X', target='Y') mon = NetworkMonitor(network, state_vars=['s', 'v', 'w']) network.add_monitor(mon, name='monitor') network.run(inpts={'X': torch.bernoulli(torch.rand(50, inpt.n))}, time=50) recording = mon.get() assert recording['X']['s'].size() == torch.Size([inpt.n, 50]) assert recording['Y']['s'].size() == torch.Size([_if.n, 50]) assert recording['Y']['s'].size() == torch.Size([_if.n, 50]) del network.monitors['monitor'] mon = NetworkMonitor(network, state_vars=['s', 'v', 'w'], time=50) network.add_monitor(mon, name='monitor') network.run(inpts={'X': torch.bernoulli(torch.rand(50, inpt.n))}, time=50) recording = mon.get() assert recording['X']['s'].size() == torch.Size([inpt.n, 50]) assert recording['Y']['s'].size() == torch.Size([_if.n, 50]) assert recording['Y']['s'].size() == torch.Size([_if.n, 50])
def test_empty(self): for dt in [0.1, 1.0, 5.0]: network = Network(dt=dt) assert network.dt == dt network.run(inpts={}, time=1000) network.save('net.pt') _network = load('net.pt') assert _network.dt == dt assert _network.learning del _network _network = load('net.pt', learning=True) assert _network.dt == dt assert _network.learning del _network _network = load('net.pt', learning=False) assert _network.dt == dt assert not _network.learning del _network os.remove('net.pt')
import torch import matplotlib.pyplot as plt from bindsnet.network import Network from bindsnet.network.nodes import Input, LIFNodes, IO_Input from bindsnet.network.topology import Connection from bindsnet.network.monitors import Monitor from bindsnet.analysis.plotting import plot_spikes, plot_voltages, plot_weights from bindsnet.learning import MSTDP, PostPre, Hebbian from bindsnet.utils import Error2IO_Current from bindsnet.encoding import poisson time = 1000 network = Network(dt=1) # GR_Movement_layer = Input(n=100) GR_Joint_layer = Input(n=500, traces=True) PK = LIFNodes(n=8, traces=True) PK_Anti = LIFNodes(n=8, traces=True) IO = IO_Input(n=8) IO_Anti = IO_Input(n=8) DCN = LIFNodes(n=100, thresh=-57, traces=True) DCN_Anti = LIFNodes(n=100, thresh=-57, trace=True) # 输入motor相关 Parallelfiber = Connection( source=GR_Joint_layer, target=PK, wmin=0, wmax=10, update_rule=Hebbian, # 此处可替换为自己写的LTP nu=0.1, w=0.1 + torch.zeros(GR_Joint_layer.n, PK.n))
def main(args): if args.gpu: torch.cuda.manual_seed_all(args.seed) else: torch.manual_seed(args.seed) conv_size = int( (28 - args.kernel_size + 2 * args.padding) / args.stride) + 1 # Build network. network = Network() input_layer = Input(n=784, shape=(1, 28, 28), traces=True) conv_layer = DiehlAndCookNodes( n=args.n_filters * conv_size * conv_size, shape=(args.n_filters, conv_size, conv_size), traces=True, ) conv_conn = Conv2dConnection( input_layer, conv_layer, kernel_size=args.kernel_size, stride=args.stride, update_rule=PostPre, norm=0.4 * args.kernel_size**2, nu=[0, args.lr], reduction=max_without_indices, wmax=1.0, ) w = torch.zeros(args.n_filters, conv_size, conv_size, args.n_filters, conv_size, conv_size) for fltr1 in range(args.n_filters): for fltr2 in range(args.n_filters): if fltr1 != fltr2: for i in range(conv_size): for j in range(conv_size): w[fltr1, i, j, fltr2, i, j] = -100.0 w = w.view(args.n_filters * conv_size * conv_size, args.n_filters * conv_size * conv_size) recurrent_conn = Connection(conv_layer, conv_layer, w=w) network.add_layer(input_layer, name="X") network.add_layer(conv_layer, name="Y") network.add_connection(conv_conn, source="X", target="Y") network.add_connection(recurrent_conn, source="Y", target="Y") # Voltage recording for excitatory and inhibitory layers. voltage_monitor = Monitor(network.layers["Y"], ["v"], time=args.time) network.add_monitor(voltage_monitor, name="output_voltage") if args.gpu: network.to("cuda") # Load MNIST data. train_dataset = MNIST( PoissonEncoder(time=args.time, dt=args.dt), None, os.path.join(ROOT_DIR, "data", "MNIST"), download=True, train=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x * args.intensity) ]), ) spikes = {} for layer in set(network.layers): spikes[layer] = Monitor(network.layers[layer], state_vars=["s"], time=args.time) network.add_monitor(spikes[layer], name="%s_spikes" % layer) voltages = {} for layer in set(network.layers) - {"X"}: voltages[layer] = Monitor(network.layers[layer], state_vars=["v"], time=args.time) network.add_monitor(voltages[layer], name="%s_voltages" % layer) # Train the network. print("Begin training.\n") start = time() weights_im = None for epoch in range(args.n_epochs): if epoch % args.progress_interval == 0: print("Progress: %d / %d (%.4f seconds)" % (epoch, args.n_epochs, time() - start)) start = time() train_dataloader = DataLoader( train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=args.gpu, ) for step, batch in enumerate(tqdm(train_dataloader)): # Get next input sample. inpts = {"X": batch["encoded_image"]} if args.gpu: inpts = {k: v.cuda() for k, v in inpts.items()} # Run the network on the input. network.run(inpts=inpts, time=args.time, input_time_dim=0) # Decay learning rate. network.connections["X", "Y"].nu[1] *= 0.99 # Optionally plot various simulation information. if args.plot: weights = conv_conn.w weights_im = plot_conv2d_weights(weights, im=weights_im) plt.pause(1e-8) network.reset_() # Reset state variables. print("Progress: %d / %d (%.4f seconds)\n" % (args.n_epochs, args.n_epochs, time() - start)) print("Training complete.\n")
plot_spikes, plot_voltages, plot_weights, ) from bindsnet.datasets import MNIST from bindsnet.encoding import poisson_loader from bindsnet.network import Network from bindsnet.network.nodes import Input # Build a simple two-layer, input-output network. from bindsnet.network.monitors import Monitor from bindsnet.network.nodes import LIFNodes from bindsnet.network.topology import Connection from bindsnet.utils import get_square_weights network = Network(dt=1.0) inpt = Input(784, shape=(28, 28)) network.add_layer(inpt, name="I") output = LIFNodes(625, thresh=-52 + torch.randn(625)) network.add_layer(output, name="O") C1 = Connection(source=inpt, target=output, w=torch.randn(inpt.n, output.n)) C2 = Connection(source=output, target=output, w=0.5 * torch.randn(output.n, output.n)) network.add_connection(C1, source="I", target="O") network.add_connection(C2, source="O", target="O") spikes = {} for l in network.layers: spikes[l] = Monitor(network.layers[l], ["s"], time=250)
seed = args.seed n_neurons = args.n_neurons dt = args.dt plot_interval = args.plot_interval render_interval = args.render_interval print_interval = args.print_interval gpu = args.gpu if gpu: torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) # Build network. network = Network(dt=dt) # Layers of neurons. inpt = Input(shape=(110, 84), traces=True) # Input layer exc = LIFNodes(n=n_neurons, refrac=0, traces=True) # Excitatory layer readout = LIFNodes(n=14, refrac=0, traces=True) # Readout layer layers = {'X' : inpt, 'E' : exc, 'R' : readout} # Connections between layers. # Input -> excitatory. w = 0.01 * torch.rand(layers['X'].n, layers['E'].n) input_exc_conn = Connection(source=layers['X'], target=layers['E'], w=0.01 * torch.rand(layers['X'].n, layers['E'].n), wmax=0.02, norm=0.01 * layers['X'].n) # Excitatory -> readout. exc_readout_conn = Connection(source=layers['E'], target=layers['R'], w=0.01 * torch.rand(layers['E'].n, layers['R'].n),
tnn_thresh = 10 max_weight = num_timesteps num_winners = 3 #tnn_layer_sz time = num_timesteps gpu = False if gpu and torch.cuda.is_available(): torch.cuda.set_device(device_id) # torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.manual_seed(seed) plot = True # build network: network = Network(dt=1) input_layer = Input(n=input_size) tnn_layer_1 = TemporalNeurons( \ n=tnn_layer_sz, \ timesteps=num_timesteps, \ threshold=tnn_thresh, \ num_winners=num_winners\ ) buffer_layer_1 = TemporalBufferNeurons( n=tnn_layer_sz, timesteps=num_timesteps, ) C1 = Connection(source=input_layer,
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0) # Grab the shape of a single sample (not including batch) # So, TxCxHxW sample_shape = train_dataset[0]["encoded_image"].shape print(args.dataset, " has shape ", sample_shape) conv_size = int((sample_shape[-1] - kernel_size + 2 * padding) / stride) + 1 per_class = int((n_filters * conv_size * conv_size) / 10) # Build a small convolutional network network = Network() # Make sure to include the batch dimension but not time input_layer = Input(shape=(1, *sample_shape[1:]), traces=True) conv_layer = LIFNodes( n=n_filters * conv_size * conv_size, shape=(1, n_filters, conv_size, conv_size), traces=True, ) conv_conn = Conv2dConnection( input_layer, conv_layer, kernel_size=kernel_size, stride=stride,
def toLIF(network: Network): new_network = Network(dt=1, learning=True) input_layer = Input(n=network.X.n, shape=network.X.shape, traces=True, tc_trace=network.X.tc_trace.item()) exc_layer = LIFNodes( n=network.Ae.n, traces=True, rest=network.Ai.rest.item(), reset=network.Ai.reset.item(), thresh=network.Ai.thresh.item(), refrac=network.Ai.refrac.item(), tc_decay=network.Ai.tc_decay.item(), ) inh_layer = LIFNodes( n=network.Ai.n, traces=False, rest=network.Ai.rest.item(), reset=network.Ai.reset.item(), thresh=network.Ai.thresh.item(), tc_decay=network.Ai.tc_decay.item(), refrac=network.Ai.refrac.item(), ) # Connections w = network.X_to_Ae.w input_exc_conn = Connection( source=input_layer, target=exc_layer, w=w, update_rule=PostPre, nu=network.X_to_Ae.nu, reduction=network.X_to_Ae.reduction, wmin=network.X_to_Ae.wmin, wmax=network.X_to_Ae.wmax, norm=network.X_to_Ae.norm * 1, ) w = network.Ae_to_Ai.w exc_inh_conn = Connection(source=exc_layer, target=inh_layer, w=w, wmin=network.Ae_to_Ai.wmin, wmax=network.Ae_to_Ai.wmax) w = network.Ai_to_Ae.w inh_exc_conn = Connection(source=inh_layer, target=exc_layer, w=w, wmin=network.Ai_to_Ae.wmin, wmax=network.Ai_to_Ae.wmax) # Add to network new_network.add_layer(input_layer, name="X") new_network.add_layer(exc_layer, name="Ae") new_network.add_layer(inh_layer, name="Ai") new_network.add_connection(input_exc_conn, source="X", target="Ae") new_network.add_connection(exc_inh_conn, source="Ae", target="Ai") new_network.add_connection(inh_exc_conn, source="Ai", target="Ae") exc_voltage_monitor = Monitor(new_network.layers["Ae"], ["v"], time=500) inh_voltage_monitor = Monitor(new_network.layers["Ai"], ["v"], time=500) new_network.add_monitor(exc_voltage_monitor, name="exc_voltage") new_network.add_monitor(inh_voltage_monitor, name="inh_voltage") spikes = {} for layer in set(network.layers): spikes[layer] = Monitor(new_network.layers[layer], state_vars=["s"], time=time) new_network.add_monitor(spikes[layer], name="%s_spikes" % layer) return new_network
import torch from bindsnet.network import Network from bindsnet.pipeline import Pipeline from bindsnet.learning import m_stdp_et from bindsnet.encoding import bernoulli from bindsnet.network.topology import Connection from bindsnet.environment import GymEnvironment from bindsnet.network.nodes import Input, LIFNodes from bindsnet.pipeline.feedback import select_multinomial # Build network. network = Network(dt=1.0) # Layers of neurons. inpt = Input(n=78 * 84, shape=[78, 84], traces=True) middle = LIFNodes(n=225, traces=True, thresh=-52.0 + torch.randn(225)) out = LIFNodes(n=60, refrac=0, traces=True, thresh=-40.0) # Connections between layers. inpt_middle = Connection(source=inpt, target=middle, wmax=1e-2) middle_out = Connection(source=middle, target=out, wmax=0.5, update_rule=m_stdp_et, nu=2e-2, norm=0.15 * middle.n) # Add all layers and connections to the network. network.add_layer(inpt, name='X') network.add_layer(middle, name='Y') network.add_layer(out, name='Z')
gpu = args.gpu if gpu: torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) if not train: update_interval = n_test conv_size = int((28 - kernel_size + 2 * padding) / stride) + 1 per_class = int((n_filters * conv_size * conv_size) / 10) # Build network. network = Network() input_layer = Input(n=784, shape=(1, 1, 28, 28), traces=True) conv_layer = DiehlAndCookNodes(n=n_filters * conv_size * conv_size, shape=(1, n_filters, conv_size, conv_size), traces=True) conv_conn = Conv2dConnection(input_layer, conv_layer, kernel_size=kernel_size, stride=stride, update_rule=PostPre, norm=0.4 * kernel_size**2, nu=[1e-4, 1e-2], wmax=1.0)
plot = args.plot gpu = args.gpu if gpu: torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) if not train: update_interval = n_test conv_size = int((28 - kernel_size + 2 * padding) / stride) + 1 per_class = int((n_filters * conv_size * conv_size) / 10) # Build network. network = Network() input_layer = Input(n=784, shape=(1, 28, 28), traces=True) conv_layer = DiehlAndCookNodes( n=n_filters * conv_size * conv_size, shape=(n_filters, conv_size, conv_size), traces=True, ) conv_conn = Conv2dConnection( input_layer, conv_layer, kernel_size=kernel_size, stride=stride, update_rule=PostPre, norm=0.4 * kernel_size**2,
tnn_layer_sz = 20 rtnn_layer_sz = 50 num_timesteps = 16 tnn_thresh = 64 rtnn_thresh = 8 max_weight = 16 max_weight_rtnn = 16 num_winners_tnn = 1 num_winners_rtnn = rtnn_layer_sz//10 time = num_timesteps torch.manual_seed(seed) # build network: network = Network(dt=1) input_layer_a = Input(n=input_slice) input_layer_b = Input(n=input_slice) tnn_layer_1a = TemporalNeurons( n=tnn_layer_sz, timesteps=num_timesteps, threshold=tnn_thresh, num_winners=num_winners_tnn ) tnn_layer_1b = TemporalNeurons( n=tnn_layer_sz, timesteps=num_timesteps, threshold=tnn_thresh, num_winners=num_winners_tnn )
def ann_to_snn(ann: Union[nn.Module, str], input_shape: Sequence[int], data: Optional[torch.Tensor] = None, percentile: float = 99.9, node_type: Optional[nodes.Nodes] = SubtractiveResetIFNodes, **kwargs) -> Network: # language=rst """ Converts an artificial neural network (ANN) written as a ``torch.nn.Module`` into a near-equivalent spiking neural network. :param ann: Artificial neural network implemented in PyTorch. Accepts either ``torch.nn.Module`` or path to network saved using ``torch.save()``. :param input_shape: Shape of input data. :param data: Data to use to perform data-based weight normalization of shape ``[n_examples, ...]``. :param percentile: Percentile (in ``[0, 100]``) of activations to scale by in data-based normalization scheme. :return: Spiking neural network implemented in PyTorch. """ if isinstance(ann, str): ann = torch.load(ann) else: ann = deepcopy(ann) assert isinstance(ann, nn.Module) if data is None: import warnings warnings.warn("Data is None. Weights will not be scaled.", RuntimeWarning) else: ann = data_based_normalization(ann=ann, data=data.detach(), percentile=percentile) snn = Network() input_layer = nodes.RealInput(shape=input_shape) snn.add_layer(input_layer, name="Input") children = [] for c in ann.children(): if isinstance(c, nn.Sequential): for c2 in list(c.children()): children.append(c2) else: children.append(c) i = 0 prev = input_layer while i < len(children) - 1: current, nxt = children[i:i + 2] layer, connection = _ann_to_snn_helper(prev, current, node_type, **kwargs) i += 1 if layer is None or connection is None: continue snn.add_layer(layer, name=str(i)) snn.add_connection(connection, source=str(i - 1), target=str(i)) prev = layer current = children[-1] layer, connection = _ann_to_snn_helper(prev, current, node_type, **kwargs) i += 1 if layer is not None or connection is not None: snn.add_layer(layer, name=str(i)) snn.add_connection(connection, source=str(i - 1), target=str(i)) return snn
from bindsnet.network import Network from bindsnet.pipeline import EnvironmentPipeline from bindsnet.learning import MSTDP from bindsnet.encoding import bernoulli from bindsnet.network.topology import Connection from bindsnet.environment import GymEnvironment from bindsnet.network.nodes import Input, LIFNodes from bindsnet.pipeline.action import select_softmax # Build network. network = Network(dt=1.0) # Layers of neurons. inpt = Input(n=80 * 80, shape=[80, 80], traces=True) middle = LIFNodes(n=100, traces=True) out = LIFNodes(n=4, refrac=0, traces=True) # Connections between layers. inpt_middle = Connection(source=inpt, target=middle, wmin=0, wmax=1e-1) middle_out = Connection( source=middle, target=out, wmin=0, wmax=1, update_rule=MSTDP, nu=1e-1, norm=0.5 * middle.n, ) # Add all layers and connections to the network. network.add_layer(inpt, name="Input Layer")
def test_add_objects(self): network = Network(dt=1.0, learning=False) inpt = Input(100) network.add_layer(inpt, name='X') lif = LIFNodes(50) network.add_layer(lif, name='Y') assert inpt == network.layers['X'] assert lif == network.layers['Y'] conn = Connection(inpt, lif) network.add_connection(conn, source='X', target='Y') assert conn == network.connections[('X', 'Y')] monitor = Monitor(lif, state_vars=['s', 'v']) network.add_monitor(monitor, 'Y') assert monitor == network.monitors['Y'] network.save('net.pt') _network = load('net.pt', learning=True) assert _network.learning assert 'X' in _network.layers assert 'Y' in _network.layers assert ('X', 'Y') in _network.connections assert 'Y' in _network.monitors del _network os.remove('net.pt')
def main(seed=0, n_train=60000, n_test=10000, kernel_size=(16, ), stride=(4, ), n_filters=25, padding=0, inhib=100, time=25, lr=1e-3, lr_decay=0.99, dt=1, intensity=1, progress_interval=10, update_interval=250, plot=False, train=True, gpu=False): assert n_train % update_interval == 0 and n_test % update_interval == 0, \ 'No. examples must be divisible by update_interval' params = [ seed, n_train, kernel_size, stride, n_filters, padding, inhib, time, lr, lr_decay, dt, intensity, update_interval ] model_name = '_'.join([str(x) for x in params]) if not train: test_params = [ seed, n_train, n_test, kernel_size, stride, n_filters, padding, inhib, time, lr, lr_decay, dt, intensity, update_interval ] np.random.seed(seed) if gpu: torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) n_examples = n_train if train else n_test input_shape = [20, 20] if kernel_size == input_shape: conv_size = [1, 1] else: conv_size = (int((input_shape[0] - kernel_size[0]) / stride[0]) + 1, int((input_shape[1] - kernel_size[1]) / stride[1]) + 1) n_classes = 10 n_neurons = n_filters * np.prod(conv_size) total_kernel_size = int(np.prod(kernel_size)) total_conv_size = int(np.prod(conv_size)) # Build network. if train: network = Network() input_layer = Input(n=400, shape=(1, 1, 20, 20), traces=True) conv_layer = DiehlAndCookNodes(n=n_filters * total_conv_size, shape=(1, n_filters, *conv_size), thresh=-64.0, traces=True, theta_plus=0.05 * (kernel_size[0] / 20), refrac=0) conv_layer2 = LIFNodes(n=n_filters * total_conv_size, shape=(1, n_filters, *conv_size), refrac=0) conv_conn = Conv2dConnection(input_layer, conv_layer, kernel_size=kernel_size, stride=stride, update_rule=WeightDependentPostPre, norm=0.05 * total_kernel_size, nu=[0, lr], wmin=0, wmax=0.25) conv_conn2 = Conv2dConnection(input_layer, conv_layer2, w=conv_conn.w, kernel_size=kernel_size, stride=stride, update_rule=None, wmax=0.25) w = -inhib * torch.ones(n_filters, conv_size[0], conv_size[1], n_filters, conv_size[0], conv_size[1]) for f in range(n_filters): for f2 in range(n_filters): if f != f2: w[f, :, :f2, :, :] = 0 w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1]) recurrent_conn = Connection(conv_layer, conv_layer, w=w) network.add_layer(input_layer, name='X') network.add_layer(conv_layer, name='Y') network.add_layer(conv_layer2, name='Y_') network.add_connection(conv_conn, source='X', target='Y') network.add_connection(conv_conn2, source='X', target='Y_') network.add_connection(recurrent_conn, source='Y', target='Y') # Voltage recording for excitatory and inhibitory layers. voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time) network.add_monitor(voltage_monitor, name='output_voltage') else: network = load_network(os.path.join(params_path, model_name + '.pt')) network.connections['X', 'Y'].update_rule = NoOp( connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu) network.layers['Y'].theta_decay = 0 network.layers['Y'].theta_plus = 0 # Load MNIST data. dataset = MNIST(data_path, download=True) if train: images, labels = dataset.get_train() else: images, labels = dataset.get_test() images *= intensity images = images[:, 4:-4, 4:-4].contiguous() # Record spikes during the simulation. spike_record = torch.zeros(update_interval, time, n_neurons) full_spike_record = torch.zeros(n_examples, n_neurons) # Neuron assignments and spike proportions. if train: logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs', max_iter=1000, multi_class='multinomial') logreg_model.coef_ = np.zeros([n_classes, n_neurons]) logreg_model.intercept_ = np.zeros(n_classes) logreg_model.classes_ = np.arange(n_classes) else: path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt') logreg_coef, logreg_intercept = torch.load(open(path, 'rb')) logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs', max_iter=1000, multi_class='multinomial') logreg_model.coef_ = logreg_coef logreg_model.intercept_ = logreg_intercept logreg_model.classes_ = np.arange(n_classes) # Sequence of accuracy estimates. curves = {'logreg': []} predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()} if train: best_accuracy = 0 spikes = {} for layer in set(network.layers): spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time) network.add_monitor(spikes[layer], name='%s_spikes' % layer) # Train the network. if train: print('\nBegin training.\n') else: print('\nBegin test.\n') inpt_ims = None inpt_axes = None spike_ims = None spike_axes = None weights_im = None plot_update_interval = 100 start = t() for i in range(n_examples): if i % progress_interval == 0: print('Progress: %d / %d (%.4f seconds)' % (i, n_examples, t() - start)) start = t() if i % update_interval == 0 and i > 0: if train: network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay if i % len(labels) == 0: current_labels = labels[-update_interval:] current_record = full_spike_record[-update_interval:] else: current_labels = labels[i % len(labels) - update_interval:i % len(labels)] current_record = full_spike_record[i % len(labels) - update_interval:i % len(labels)] # Update and print accuracy evaluations. curves, preds = update_curves(curves, current_labels, n_classes, full_spike_record=current_record, logreg=logreg_model) print_results(curves) for scheme in preds: predictions[scheme] = torch.cat( [predictions[scheme], preds[scheme]], -1) # Save accuracy curves to disk. to_write = ['train'] + params if train else ['test'] + params f = '_'.join([str(x) for x in to_write]) + '.pt' torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb')) if train: if any([x[-1] > best_accuracy for x in curves.values()]): print( 'New best accuracy! Saving network parameters to disk.' ) # Save network to disk. network.save(os.path.join(params_path, model_name + '.pt')) path = os.path.join( params_path, '_'.join(['auxiliary', model_name]) + '.pt') torch.save((logreg_model.coef_, logreg_model.intercept_), open(path, 'wb')) best_accuracy = max([x[-1] for x in curves.values()]) # Refit logistic regression model. logreg_model = logreg_fit(full_spike_record[:i], labels[:i], logreg_model) print() # Get next input sample. image = images[i % len(images)] sample = bernoulli(datum=image, time=time, dt=dt, max_prob=1).unsqueeze(1).unsqueeze(1) inpts = {'X': sample} # Run the network on the input. network.run(inpts=inpts, time=time) network.connections['X', 'Y_'].w = network.connections['X', 'Y'].w # Add to spikes recording. spike_record[i % update_interval] = spikes['Y_'].get('s').view( time, -1) full_spike_record[i] = spikes['Y_'].get('s').view(time, -1).sum(0) # Optionally plot various simulation information. if plot and i % plot_update_interval == 0: _input = inpts['X'].view(time, 400).sum(0).view(20, 20) w = network.connections['X', 'Y'].w _spikes = { 'X': spikes['X'].get('s').view(400, time), 'Y': spikes['Y'].get('s').view(n_filters * total_conv_size, time), 'Y_': spikes['Y_'].get('s').view(n_filters * total_conv_size, time) } inpt_axes, inpt_ims = plot_input(image.view(20, 20), _input, label=labels[i % len(labels)], ims=inpt_ims, axes=inpt_axes) spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes) weights_im = plot_conv2d_weights( w, im=weights_im, wmax=network.connections['X', 'Y'].wmax) plt.pause(1e-2) network.reset_() # Reset state variables. print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)') i += 1 if i % len(labels) == 0: current_labels = labels[-update_interval:] current_record = full_spike_record[-update_interval:] else: current_labels = labels[i % len(labels) - update_interval:i % len(labels)] current_record = full_spike_record[i % len(labels) - update_interval:i % len(labels)] # Update and print accuracy evaluations. curves, preds = update_curves(curves, current_labels, n_classes, full_spike_record=current_record, logreg=logreg_model) print_results(curves) for scheme in preds: predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1) if train: if any([x[-1] > best_accuracy for x in curves.values()]): print('New best accuracy! Saving network parameters to disk.') # Save network to disk. network.save(os.path.join(params_path, model_name + '.pt')) path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt') torch.save((logreg_model.coef_, logreg_model.intercept_), open(path, 'wb')) if train: print('\nTraining complete.\n') else: print('\nTest complete.\n') print('Average accuracies:\n') for scheme in curves.keys(): print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme])))) # Save accuracy curves to disk. to_write = ['train'] + params if train else ['test'] + params to_write = [str(x) for x in to_write] f = '_'.join(to_write) + '.pt' torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb')) # Save results to disk. results = [np.mean(curves['logreg']), np.std(curves['logreg'])] to_write = params + results if train else test_params + results to_write = [str(x) for x in to_write] name = 'train.csv' if train else 'test.csv' if not os.path.isfile(os.path.join(results_path, name)): with open(os.path.join(results_path, name), 'w') as f: if train: columns = [ 'seed', 'n_train', 'kernel_size', 'stride', 'n_filters', 'padding', 'inhib', 'time', 'lr', 'lr_decay', 'dt', 'intensity', 'update_interval', 'mean_logreg', 'std_logreg' ] header = ','.join(columns) + '\n' f.write(header) else: columns = [ 'seed', 'n_train', 'n_test', 'kernel_size', 'stride', 'n_filters', 'padding', 'inhib', 'time', 'lr', 'lr_decay', 'dt', 'intensity', 'update_interval', 'mean_logreg', 'std_logreg' ] header = ','.join(columns) + '\n' f.write(header) with open(os.path.join(results_path, name), 'a') as f: f.write(','.join(to_write) + '\n') if labels.numel() > n_examples: labels = labels[:n_examples] else: while labels.numel() < n_examples: if 2 * labels.numel() > n_examples: labels = torch.cat( [labels, labels[:n_examples - labels.numel()]]) else: labels = torch.cat([labels, labels]) # Compute confusion matrices and save them to disk. confusions = {} for scheme in predictions: confusions[scheme] = confusion_matrix(labels, predictions[scheme]) to_write = ['train'] + params if train else ['test'] + test_params f = '_'.join([str(x) for x in to_write]) + '.pt' torch.save(confusions, os.path.join(confusion_path, f))
def Translate_Into_Networks(input_N, Shape, Output_N, Weight): network_list = [] path = "gene/" file_list = os.listdir(path) gene_file_check = [file for file in file_list if file.endswith(".txt")] if len(gene_file_check) == 0: import startup Gene_List = Genetic.Read_Gene() for i in range(len(Gene_List)): network = Network() Decoded_List = [] Decoded_DNA_List = [] for j in range(len(Gene_List[i])): Decoded_Gene = Gene_List[i][j].split('-') if (Decoded_Gene[3] == 'F'): pass else: if Decoded_Gene[1] == '~': Decoded_List.append( [int(Decoded_Gene[0]), int(Decoded_Gene[2]), 0]) elif Decoded_Gene[1] == '!': Decoded_List.append( [int(Decoded_Gene[0]), int(Decoded_Gene[2]), 1]) elif Decoded_Gene[1] == '@': Decoded_List.append( [int(Decoded_Gene[0]), int(Decoded_Gene[2]), 2]) elif Decoded_Gene[1] == '#': Decoded_List.append( [int(Decoded_Gene[0]), int(Decoded_Gene[2]), 3]) elif Decoded_Gene[1] == '$': Decoded_List.append( [int(Decoded_Gene[0]), int(Decoded_Gene[2]), 4]) else: print("THE GENOTYPE VALUE IS UNVALID") raise ValueError Decoded_DNA_List.append(Decoded_List) Decoded_RNA_List: list = Decoded_DNA_List.copy() for decoded_dna_idx, decoded_dna in enumerate(Decoded_DNA_List): Gene_NUM = len(decoded_dna) for k in range(Gene_NUM): a = Decoded_DNA_List[decoded_dna_idx][k] for l in range(k, Gene_NUM): b = Decoded_DNA_List[decoded_dna_idx][l] if a and b == 1: if decoded_dna[k][2] == 0: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[l]) elif decoded_dna[k][2] == 1: if decoded_dna[l][2] < 1: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[k]) else: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[l]) elif decoded_dna[k][2] == 2: if decoded_dna[l][2] < 2: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[k]) else: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[l]) elif decoded_dna[k][2] == 3: if decoded_dna[l][2] < 3: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[k]) else: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[l]) elif decoded_dna[k][2] == 4: if decoded_dna[l][2] >= 4: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[l]) else: Decoded_RNA_List[decoded_dna_idx].remove( decoded_dna[k]) else: pass else: pass for Decoded_RNA in Decoded_RNA_List: layer_list = {} for m in range(len(Decoded_RNA)): for n in range(m, len(Decoded_RNA)): if Decoded_RNA[m][1] == Decoded_RNA[n][0]: if Decoded_RNA[n][2] == 0: layer_list[Decoded_RNA[m][0]] = nodes.IFNodes( n=1, traces=True) elif Decoded_RNA[n][2] == 1: layer_list[Decoded_RNA[m][0]] = nodes.LIFNodes( n=1, traces=True) elif Decoded_RNA[n][2] == 2: layer_list[Decoded_RNA[m] [0]] = nodes.McCullochPitts(n=1, traces=True) elif Decoded_RNA[n][2] == 3: layer_list[Decoded_RNA[m] [0]] = nodes.IzhikevichNodes( n=1, traces=True) elif Decoded_RNA[n][2] == 4: layer_list[Decoded_RNA[m][0]] = nodes.SRM0Nodes( n=1, traces=True) else: print("UNVALID GENO_NEURON CODE") raise ValueError elif n == len(Decoded_List) - 1: layer_list[Decoded_RNA[m][1]] = nodes.LIFNodes(n=1) for l in range(len(Decoded_RNA)): if not Decoded_RNA[l][0] in layer_list: if Decoded_RNA[l][2] == 0: layer_list[Decoded_RNA[l][0]] = nodes.IFNodes( n=1, traces=True) elif Decoded_RNA[l][2] == 1: layer_list[Decoded_RNA[l][0]] = nodes.LIFNodes( n=1, traces=True) elif Decoded_RNA[l][2] == 2: layer_list[Decoded_RNA[l][0]] = nodes.McCullochPitts( n=1, traces=True) elif Decoded_RNA[l][2] == 3: layer_list[Decoded_RNA[l][0]] = nodes.IzhikevichNodes( n=1, traces=True) elif Decoded_RNA[l][2] == 4: layer_list[Decoded_RNA[l][0]] = nodes.SRM0Nodes( n=1, traces=True) Input_Layer = nodes.Input(n=input_N, shape=Shape, traces=True) out = nodes.LIFNodes(n=Output_N, refrac=0, traces=True) network.add_layer(layer=Input_Layer, name="Input Layer") for key_l in list(layer_list.keys()): network.add_layer(layer=layer_list[key_l], name=str(key_l)) network.add_layer(layer=out, name="Output Layer") if len(layer_list.keys()) == 0: layer = nodes.LIFNodes(n=1, traces=True) network.add_layer(layer=layer, name="mid layer") inpt_connection = Connection(source=Input_Layer, target=layer, w=Weight * torch.ones(input_N)) opt_connection = Connection(source=layer, target=out, w=Weight * torch.ones(1)) network.add_connection(inpt_connection, source="Input_Layer", target="mid layer") network.add_connection(opt_connection, source="mid layer", target="Output Layer") else: for key_ic in list(layer_list.keys()): inpt_connection = Connection(source=Input_Layer, target=layer_list[key_ic], w=Weight * torch.ones(input_N)) network.add_connection(inpt_connection, source="Input_Layer", target=str(key_ic)) for key_op in list(layer_list.keys()): output_connection = Connection(source=layer_list[key_op], target=out, w=Weight * torch.ones(1), update_rule=MSTDP) network.add_connection(output_connection, source=str(key_op), target="Output Layer") for generating_protein in Decoded_RNA: mid_connection = Connection( source=layer_list[generating_protein[0]], target=layer_list[generating_protein[1]], w=Weight * torch.ones(1), update_rule=MSTDP) network.add_connection(mid_connection, source=str(generating_protein[0]), target=str(generating_protein[1])) network_list.append(network) network.save('Network/' + str(i) + '.pt') return network_list
import torch from bindsnet.network import Network from bindsnet.pipeline import EnvironmentPipeline from bindsnet.learning import MSTDPET from bindsnet.encoding import BernoulliEncoder from bindsnet.network.topology import Connection from bindsnet.environment import GymEnvironment from bindsnet.network.nodes import Input, LIFNodes from bindsnet.pipeline.action import select_multinomial # Build network. network = Network(dt=1.0) # Layers of neurons. inpt = Input(n=78 * 84, shape=[1, 1, 78, 84], traces=True) middle = LIFNodes(n=225, traces=True, thresh=-52.0 + torch.randn(225)) out = LIFNodes(n=60, refrac=0, traces=True, thresh=-40.0) # Connections between layers. inpt_middle = Connection(source=inpt, target=middle, wmax=1e-2) middle_out = Connection( source=middle, target=out, wmax=0.5, update_rule=MSTDPET, nu=2e-2, norm=0.15 * middle.n, ) # Add all layers and connections to the network.
seed = args.seed n_neurons = args.n_neurons dt = args.dt plot_interval = args.plot_interval render_interval = args.render_interval print_interval = args.print_interval gpu = args.gpu if gpu: torch.set_default_tensor_type("torch.cuda.FloatTensor") torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) # Build network. network = Network(dt=dt) # Layers of neurons. inpt = Input(shape=(1, 1, 1, 80, 80), traces=True) # Input layer exc = LIFNodes(n=n_neurons, refrac=0, traces=True) # Excitatory layer readout = LIFNodes(n=4, refrac=0, traces=True) # Readout layer layers = {"X": inpt, "E": exc, "R": readout} # Connections between layers. # Input -> excitatory. w = 0.01 * torch.rand(layers["X"].n, layers["E"].n) input_exc_conn = Connection( source=layers["X"], target=layers["E"], w=0.01 * torch.rand(layers["X"].n, layers["E"].n), wmax=0.02,