def _get_agent_token(self, name: str) -> Dict[str, str]: """ Retrieves an agent token from the Auth service with a formatted name. This prepends "KBApp_" to the name for filtering, and trims to make sure the name isn't longer than it should be. """ token_name = f"KBApp_{name}" token_name = token_name[: self.__MAX_TOKEN_NAME_LEN] return auth.get_agent_token(auth.get_auth_token(), token_name=token_name)
def _run_app_internal(self, app_id, params, tag, version, cell_id, run_id, dry_run): """ Attemps to run the app, returns a Job with the running app info. Should *hopefully* also inject that app into the Narrative's metadata. Probably need some kind of JavaScript-foo to get that to work. Parameters: ----------- app_id - should be from the app spec, e.g. 'build_a_metabolic_model' or 'MegaHit/run_megahit'. params - a dictionary of parameters. tag - optional, one of [release|beta|dev] (default=release) version - optional, a semantic version string. Only released modules have versions, so if the tag is not 'release', and a version is given, a ValueError will be raised. **kwargs - these are the set of parameters to be used with the app. They can be found by using the app_usage function. If any non-optional apps are missing, a ValueError will be raised. """ ws_id = strict_system_variable('workspace_id') spec = self._get_validated_app_spec(app_id, tag, True, version=version) # Preflight check the params - all required ones are present, all # values are the right type, all numerical values are in given ranges spec_params = self.spec_manager.app_params(spec) spec_params_map = dict((spec_params[i]['id'], spec_params[i]) for i in range(len(spec_params))) ws_input_refs = extract_ws_refs(app_id, tag, spec_params, params) input_vals = self._map_inputs( spec['behavior']['kb_service_input_mapping'], params, spec_params_map) service_method = spec['behavior']['kb_service_method'] service_name = spec['behavior']['kb_service_name'] service_ver = spec['behavior'].get('kb_service_version', None) # Let the given version override the spec's version. if version is not None: service_ver = version # This is what calls the function in the back end - Module.method # This isn't the same as the app spec id. function_name = service_name + '.' + service_method job_meta = {'tag': tag} if cell_id is not None: job_meta['cell_id'] = cell_id if run_id is not None: job_meta['run_id'] = run_id # This is the input set for NJSW.run_job. Now we need the workspace id # and whatever fits in the metadata. job_runner_inputs = { 'method': function_name, 'service_ver': service_ver, 'params': input_vals, 'app_id': app_id, 'wsid': ws_id, 'meta': job_meta } if len(ws_input_refs) > 0: job_runner_inputs['source_ws_objects'] = ws_input_refs if dry_run: return job_runner_inputs # We're now almost ready to run the job. Last, we need an agent token. try: token_name = 'KBApp_{}'.format(app_id) token_name = token_name[:self.__MAX_TOKEN_NAME_LEN] agent_token = auth.get_agent_token(auth.get_auth_token(), token_name=token_name) except Exception as e: raise job_runner_inputs['meta']['token_id'] = agent_token['id'] # Log that we're trying to run a job... log_info = { 'app_id': app_id, 'tag': tag, 'version': service_ver, 'username': system_variable('user_id'), 'wsid': ws_id } kblogging.log_event(self._log, "run_app", log_info) try: job_id = clients.get("job_service", token=agent_token['token']).run_job(job_runner_inputs) except Exception as e: log_info.update({'err': str(e)}) kblogging.log_event(self._log, "run_app_error", log_info) raise transform_job_exception(e) new_job = Job(job_id, app_id, input_vals, system_variable('user_id'), tag=tag, app_version=service_ver, cell_id=cell_id, run_id=run_id, token_id=agent_token['id']) self._send_comm_message('run_status', { 'event': 'launched_job', 'event_at': datetime.datetime.utcnow().isoformat() + 'Z', 'cell_id': cell_id, 'run_id': run_id, 'job_id': job_id }) JobManager().register_new_job(new_job) if cell_id is not None: return else: return new_job
def _run_app_batch_internal(self, app_id, params, tag, version, cell_id, run_id, dry_run): batch_method = "kb_BatchApp.run_batch" batch_app_id = "kb_BatchApp/run_batch" batch_method_ver = "dev" batch_method_tag = "dev" ws_id = strict_system_variable('workspace_id') spec = self._get_validated_app_spec(app_id, tag, True, version=version) # Preflight check the params - all required ones are present, all # values are the right type, all numerical values are in given ranges spec_params = self.spec_manager.app_params(spec) # A list of lists of UPAs, used for each subjob. batch_ws_upas = list() # The list of actual input values, post-mapping. batch_run_inputs = list() for param_set in params: spec_params_map = dict((spec_params[i]['id'], spec_params[i]) for i in range(len(spec_params))) batch_ws_upas.append(extract_ws_refs(app_id, tag, spec_params, param_set)) batch_run_inputs.append(self._map_inputs( spec['behavior']['kb_service_input_mapping'], param_set, spec_params_map)) service_method = spec['behavior']['kb_service_method'] service_name = spec['behavior']['kb_service_name'] service_ver = spec['behavior'].get('kb_service_version', None) # Let the given version override the spec's version. if version is not None: service_ver = version # This is what calls the function in the back end - Module.method # This isn't the same as the app spec id. job_meta = { 'tag': batch_method_tag, 'batch_app': app_id, 'batch_tag': tag, 'batch_size': len(params), } if cell_id is not None: job_meta['cell_id'] = cell_id if run_id is not None: job_meta['run_id'] = run_id # Now put these all together in a way that can be sent to the batch processing app. batch_params = [{ "module_name": service_name, "method_name": service_method, "service_ver": service_ver, "wsid": ws_id, "meta": job_meta, "batch_params": [{ "params": batch_run_inputs[i], "source_ws_objects": batch_ws_upas[i] } for i in range(len(batch_run_inputs))], }] # We're now almost ready to run the job. Last, we need an agent token. try: token_name = 'KBApp_{}'.format(app_id) token_name = token_name[:self.__MAX_TOKEN_NAME_LEN] agent_token = auth.get_agent_token(auth.get_auth_token(), token_name=token_name) except Exception as e: raise job_meta['token_id'] = agent_token['id'] # This is the input set for NJSW.run_job. Now we need the workspace id # and whatever fits in the metadata. job_runner_inputs = { 'method': batch_method, 'service_ver': batch_method_ver, 'params': batch_params, 'app_id': batch_app_id, 'wsid': ws_id, 'meta': job_meta } # if len(ws_input_refs) > 0: # job_runner_inputs['source_ws_objects'] = ws_input_refs # if we're doing a dry run, just return the inputs that we made. if dry_run: return job_runner_inputs # Log that we're trying to run a job... log_info = { 'app_id': app_id, 'tag': batch_method_tag, 'version': service_ver, 'username': system_variable('user_id'), 'wsid': ws_id } kblogging.log_event(self._log, "run_batch_app", log_info) try: job_id = clients.get("job_service", token=agent_token['token']).run_job(job_runner_inputs) except Exception as e: log_info.update({'err': str(e)}) kblogging.log_event(self._log, "run_batch_app_error", log_info) raise transform_job_exception(e) new_job = Job(job_id, batch_app_id, batch_params, system_variable('user_id'), tag=batch_method_tag, app_version=batch_method_ver, cell_id=cell_id, run_id=run_id, token_id=agent_token['id'], meta=job_meta) self._send_comm_message('run_status', { 'event': 'launched_job', 'event_at': datetime.datetime.utcnow().isoformat() + 'Z', 'cell_id': cell_id, 'run_id': run_id, 'job_id': job_id }) JobManager().register_new_job(new_job) if cell_id is not None: return else: return new_job
def _run_app_internal(self, app_id, params, tag, version, cell_id, run_id, dry_run): """ Attemps to run the app, returns a Job with the running app info. Should *hopefully* also inject that app into the Narrative's metadata. Probably need some kind of JavaScript-foo to get that to work. Parameters: ----------- app_id - should be from the app spec, e.g. 'build_a_metabolic_model' or 'MegaHit/run_megahit'. params - a dictionary of parameters. tag - optional, one of [release|beta|dev] (default=release) version - optional, a semantic version string. Only released modules have versions, so if the tag is not 'release', and a version is given, a ValueError will be raised. **kwargs - these are the set of parameters to be used with the app. They can be found by using the app_usage function. If any non-optional apps are missing, a ValueError will be raised. """ ws_id = strict_system_variable('workspace_id') spec = self._get_validated_app_spec(app_id, tag, True, version=version) # Preflight check the params - all required ones are present, all # values are the right type, all numerical values are in given ranges spec_params = self.spec_manager.app_params(spec) spec_params_map = dict((spec_params[i]['id'], spec_params[i]) for i in range(len(spec_params))) ws_input_refs = extract_ws_refs(app_id, tag, spec_params, params) input_vals = self._map_inputs( spec['behavior']['kb_service_input_mapping'], params, spec_params_map) service_method = spec['behavior']['kb_service_method'] service_name = spec['behavior']['kb_service_name'] service_ver = spec['behavior'].get('kb_service_version', None) # Let the given version override the spec's version. if version is not None: service_ver = version # This is what calls the function in the back end - Module.method # This isn't the same as the app spec id. function_name = service_name + '.' + service_method job_meta = {'tag': tag} if cell_id is not None: job_meta['cell_id'] = cell_id if run_id is not None: job_meta['run_id'] = run_id # This is the input set for NJSW.run_job. Now we need the workspace id # and whatever fits in the metadata. job_runner_inputs = { 'method': function_name, 'service_ver': service_ver, 'params': input_vals, 'app_id': app_id, 'wsid': ws_id, 'meta': job_meta } if len(ws_input_refs) > 0: job_runner_inputs['source_ws_objects'] = ws_input_refs if dry_run: return job_runner_inputs # We're now almost ready to run the job. Last, we need an agent token. try: token_name = 'KBApp_{}'.format(app_id) token_name = token_name[:self.__MAX_TOKEN_NAME_LEN] agent_token = auth.get_agent_token(auth.get_auth_token(), token_name=token_name) except Exception as e: raise job_runner_inputs['meta']['token_id'] = agent_token['id'] # Log that we're trying to run a job... log_info = { 'app_id': app_id, 'tag': tag, 'version': service_ver, 'username': system_variable('user_id'), 'wsid': ws_id } kblogging.log_event(self._log, "run_app", log_info) try: job_id = clients.get( "execution_engine2", token=agent_token['token']).run_job(job_runner_inputs) except Exception as e: log_info.update({'err': str(e)}) kblogging.log_event(self._log, "run_app_error", log_info) raise transform_job_exception(e) new_job = Job(job_id, app_id, input_vals, system_variable('user_id'), tag=tag, app_version=service_ver, cell_id=cell_id, run_id=run_id, token_id=agent_token['id']) self._send_comm_message( 'run_status', { 'event': 'launched_job', 'event_at': datetime.datetime.utcnow().isoformat() + 'Z', 'cell_id': cell_id, 'run_id': run_id, 'job_id': job_id }) self.register_new_job(new_job) if cell_id is not None: return else: return new_job
def _run_app_batch_internal(self, app_id, params, tag, version, cell_id, run_id, dry_run): batch_method = "kb_BatchApp.run_batch" batch_app_id = "kb_BatchApp/run_batch" batch_method_ver = "dev" batch_method_tag = "dev" ws_id = strict_system_variable('workspace_id') spec = self._get_validated_app_spec(app_id, tag, True, version=version) # Preflight check the params - all required ones are present, all # values are the right type, all numerical values are in given ranges spec_params = self.spec_manager.app_params(spec) # A list of lists of UPAs, used for each subjob. batch_ws_upas = list() # The list of actual input values, post-mapping. batch_run_inputs = list() for param_set in params: spec_params_map = dict((spec_params[i]['id'], spec_params[i]) for i in range(len(spec_params))) batch_ws_upas.append( extract_ws_refs(app_id, tag, spec_params, param_set)) batch_run_inputs.append( self._map_inputs(spec['behavior']['kb_service_input_mapping'], param_set, spec_params_map)) service_method = spec['behavior']['kb_service_method'] service_name = spec['behavior']['kb_service_name'] service_ver = spec['behavior'].get('kb_service_version', None) # Let the given version override the spec's version. if version is not None: service_ver = version # This is what calls the function in the back end - Module.method # This isn't the same as the app spec id. job_meta = { 'tag': batch_method_tag, 'batch_app': app_id, 'batch_tag': tag, 'batch_size': len(params), } if cell_id is not None: job_meta['cell_id'] = cell_id if run_id is not None: job_meta['run_id'] = run_id # Now put these all together in a way that can be sent to the batch processing app. batch_params = [{ "module_name": service_name, "method_name": service_method, "service_ver": service_ver, "wsid": ws_id, "meta": job_meta, "batch_params": [{ "params": batch_run_inputs[i], "source_ws_objects": batch_ws_upas[i] } for i in range(len(batch_run_inputs))], }] # We're now almost ready to run the job. Last, we need an agent token. try: token_name = 'KBApp_{}'.format(app_id) token_name = token_name[:self.__MAX_TOKEN_NAME_LEN] agent_token = auth.get_agent_token(auth.get_auth_token(), token_name=token_name) except Exception as e: raise job_meta['token_id'] = agent_token['id'] # This is the input set for NJSW.run_job. Now we need the workspace id # and whatever fits in the metadata. job_runner_inputs = { 'method': batch_method, 'service_ver': batch_method_ver, 'params': batch_params, 'app_id': batch_app_id, 'wsid': ws_id, 'meta': job_meta } # if len(ws_input_refs) > 0: # job_runner_inputs['source_ws_objects'] = ws_input_refs # if we're doing a dry run, just return the inputs that we made. if dry_run: return job_runner_inputs # Log that we're trying to run a job... log_info = { 'app_id': app_id, 'tag': batch_method_tag, 'version': service_ver, 'username': system_variable('user_id'), 'wsid': ws_id } kblogging.log_event(self._log, "run_batch_app", log_info) try: job_id = clients.get( "execution_engine2", token=agent_token['token']).run_job(job_runner_inputs) except Exception as e: log_info.update({'err': str(e)}) kblogging.log_event(self._log, "run_batch_app_error", log_info) raise transform_job_exception(e) new_job = Job(job_id, batch_app_id, batch_params, system_variable('user_id'), tag=batch_method_tag, app_version=batch_method_ver, cell_id=cell_id, run_id=run_id, token_id=agent_token['id'], meta=job_meta) self._send_comm_message( 'run_status', { 'event': 'launched_job', 'event_at': datetime.datetime.utcnow().isoformat() + 'Z', 'cell_id': cell_id, 'run_id': run_id, 'job_id': job_id }) self.register_new_job(new_job) if cell_id is not None: return else: return new_job
def _run_app_internal(self, app_id, params, tag, version, cell_id, run_id, **kwargs): """ Attemps to run the app, returns a Job with the running app info. Should *hopefully* also inject that app into the Narrative's metadata. Probably need some kind of JavaScript-foo to get that to work. Parameters: ----------- app_id - should be from the app spec, e.g. 'build_a_metabolic_model' or 'MegaHit/run_megahit'. params - the dictionary of parameters. tag - optional, one of [release|beta|dev] (default=release) version - optional, a semantic version string. Only released modules have versions, so if the tag is not 'release', and a version is given, a ValueError will be raised. **kwargs - these are the set of parameters to be used with the app. They can be found by using the app_usage function. If any non-optional apps are missing, a ValueError will be raised. """ # TODO: this needs restructuring so that we can send back validation # failure messages. Perhaps a separate function and catch the errors, # or return an error structure. # Intro tests: self.spec_manager.check_app(app_id, tag, raise_exception=True) if version is not None and tag != "release": if re.match(r'\d+\.\d+\.\d+', version) is not None: raise ValueError( "Semantic versions only apply to released app modules. " + "You can use a Git commit hash instead to specify a " + "version.") # Get the spec & params spec = self.spec_manager.get_spec(app_id, tag) # There's some branching to do here. # Cases: # app has behavior.kb_service_input_mapping - valid long-running app. # app has behavior.output_mapping - not kb_service_input_mapping or # script_module - it's a viewer and should return immediately # app has other things besides kb_service_input_mapping - not valid. if 'behavior' not in spec: raise Exception("This app appears invalid - " + "it has no defined behavior") if 'kb_service_input_mapping' not in spec['behavior']: raise Exception("This app does not appear to be a long-running " + "job! Please use 'run_local_app' to start this " + "instead.") # Preflight check the params - all required ones are present, all # values are the right type, all numerical values are in given ranges spec_params = self.spec_manager.app_params(spec) spec_params_map = dict((spec_params[i]['id'], spec_params[i]) for i in range(len(spec_params))) ws_input_refs = extract_ws_refs(app_id, tag, spec_params, params) ws_id = system_variable('workspace_id') if ws_id is None: raise ValueError('Unable to retrive current ' + 'Narrative workspace information!') input_vals = self._map_inputs( spec['behavior']['kb_service_input_mapping'], params, spec_params_map) service_method = spec['behavior']['kb_service_method'] service_name = spec['behavior']['kb_service_name'] service_ver = spec['behavior'].get('kb_service_version', None) # Let the given version override the spec's version. if version is not None: service_ver = version # This is what calls the function in the back end - Module.method # This isn't the same as the app spec id. function_name = service_name + '.' + service_method job_meta = {'tag': tag} if cell_id is not None: job_meta['cell_id'] = cell_id if run_id is not None: job_meta['run_id'] = run_id # We're now almost ready to run the job. Last, we need an agent token. try: token_name = 'KBApp_{}'.format(app_id) token_name = token_name[:self.__MAX_TOKEN_NAME_LEN] agent_token = auth.get_agent_token(auth.get_auth_token(), token_name=token_name) except Exception as e: raise job_meta['token_id'] = agent_token['id'] # This is the input set for NJSW.run_job. Now we need the workspace id # and whatever fits in the metadata. job_runner_inputs = { 'method': function_name, 'service_ver': service_ver, 'params': input_vals, 'app_id': app_id, 'wsid': ws_id, 'meta': job_meta } if len(ws_input_refs) > 0: job_runner_inputs['source_ws_objects'] = ws_input_refs # Log that we're trying to run a job... log_info = { 'app_id': app_id, 'tag': tag, 'version': service_ver, 'username': system_variable('user_id'), 'wsid': ws_id } kblogging.log_event(self._log, "run_app", log_info) try: job_id = clients.get("job_service").run_job(job_runner_inputs) except Exception as e: log_info.update({'err': str(e)}) kblogging.log_event(self._log, "run_app_error", log_info) raise transform_job_exception(e) new_job = Job(job_id, app_id, input_vals, system_variable('user_id'), tag=tag, app_version=service_ver, cell_id=cell_id, run_id=run_id, token_id=agent_token['id']) self._send_comm_message( 'run_status', { 'event': 'launched_job', 'event_at': datetime.datetime.utcnow().isoformat() + 'Z', 'cell_id': cell_id, 'run_id': run_id, 'job_id': job_id }) JobManager().register_new_job(new_job) if cell_id is not None: return else: return new_job