def create_trainer_for_finding_lr( pipeline: Pipeline, trainer_config: TrainerConfiguration, training_data: InstancesDataset, ) -> GradientDescentTrainer: """Returns an AllenNLP Trainer used for the learning rate scan. Parameters ---------- pipeline The pipeline with the model trainer_config A trainer configuration training_data The training data """ prepare_environment(Params({})) if hasattr(training_data, "index_with"): training_data.index_with(pipeline.backbone.vocab) trainer_params = Params( helpers.sanitize_for_params(trainer_config.to_allennlp_trainer())) training_data_loader = create_dataloader(training_data, trainer_config.batch_size, trainer_config.data_bucketing) return Trainer.from_params( model=pipeline._model, data_loader=training_data_loader, params=trainer_params, serialization_dir=None, )
def create_trainer_for_finding_lr( model: PipelineModel, trainer_config: TrainerConfiguration, training_data: InstancesDataset, ) -> GradientDescentTrainer: """Returns an AllenNLP Trainer used for the learning rate scan. Parameters ---------- model The underlying model trainer_config A trainer configuration training_data The training data """ prepare_environment(Params({})) trainer_params = Params( helpers.sanitize_for_params(trainer_config.to_allennlp_trainer())) training_data_loader = create_dataloader(training_data, trainer_config.batch_size, trainer_config.data_bucketing) return cast( "GradientDescentTrainer", Trainer.from_params( model=model, data_loader=training_data_loader, params=trainer_params, serialization_dir=None, ), )