示例#1
0
def train(conf):
    words, vectors = load_vectors(conf.embeddings)
    vectors = np.array(vectors)
    char_mapping = load_char_mapping(conf.chars_file)

    input_mapping = InputMapping(char_mapping, words, conf.word_length)
    model = BiLSTM(conf, characters=n_chars(char_mapping), pretrained=vectors)
    train, validation, pos_weight = input_mapping.load_dataset(
        conf.input_directory, conf.validation_split, conf.batch_size,
        conf.sequence_length)
    training = Training(model, conf, train, validation, pos_weight)
    training.run()
示例#2
0
def create_processor(conf):
    config = load_config()
    if conf.embeddings is None:
        conf.embeddings = Path(config['sentences.wordEmbeddings'])
    if conf.chars_file is None:
        conf.chars_file = Path(config['sentences.charsFile'])
    if conf.hparams_file is None:
        conf.hparams_file = Path(config['sentences.hparamsFile'])
    if conf.model_file is None:
        conf.model_file = Path(config['sentences.modelFile'])

    logger.info('Loading hparams from: {}'.format(conf.hparams_file))
    with conf.hparams_file.open('r') as f:
        d = yaml.load(f, Loader)

        class Hparams:
            pass

        hparams = Hparams()
        hparams.__dict__.update(d)
    logger.info('Loading word embeddings from: "{}"'.format(conf.embeddings))
    words, vectors = load_vectors(conf.embeddings)
    vectors = np.array(vectors)
    logger.info('Loading characters from: {}'.format(conf.chars_file))
    char_mapping = load_char_mapping(conf.chars_file)
    input_mapping = InputMapping(char_mapping, words, hparams.word_length)
    model = BiLSTM(hparams, n_chars(char_mapping), vectors)
    model = torch.jit.script(model)
    model.eval()
    logger.info('Loading model weights from: {}'.format(conf.model_file))
    with conf.model_file.open('rb') as f:
        state_dict = torch.load(f)
        model.load_state_dict(state_dict)
    proc = SentenceProcessor(input_mapping, model)
    return proc
示例#3
0
def create_processor(conf):
    torch.set_num_threads(1)
    torch.set_num_interop_threads(1)
    logging.basicConfig(level=logging.INFO)
    check_data(conf.download_data)
    config = load_config()
    if conf.embeddings is None:
        conf.embeddings = Path(config['sentences.wordEmbeddings'])
    if conf.chars_file is None:
        conf.chars_file = Path(config['sentences.charsFile'])
    if conf.hparams_file is None:
        conf.hparams_file = Path(config['sentences.hparamsFile'])
    if conf.model_file is None:
        conf.model_file = Path(config['sentences.modelFile'])
    if conf.torch_device is not None:
        device = conf.torch_device
    else:
        device = "cpu" if conf.force_cpu or not torch.cuda.is_available(
        ) else "cuda"
    device = torch.device(device)
    logger.info('Using torch device: "{}"'.format(repr(device)))
    logger.info('Loading hparams from: {}'.format(conf.hparams_file))
    with conf.hparams_file.open('r') as f:
        d = yaml.load(f, Loader)

        class Hparams:
            pass

        hparams = Hparams()
        hparams.__dict__.update(d)
    logger.info('Loading word embeddings from: "{}"'.format(conf.embeddings))
    words, vectors = load_vectors(conf.embeddings)
    vectors = np.array(vectors)
    logger.info('Loading characters from: {}'.format(conf.chars_file))
    char_mapping = load_char_mapping(conf.chars_file)
    input_mapping = InputMapping(char_mapping, words, hparams.word_length)
    model = BiLSTM(hparams, n_chars(char_mapping), vectors)
    model.eval()
    model.to(device=device)
    model.share_memory()
    logger.info('Loading model weights from: {}'.format(conf.model_file))
    with conf.model_file.open('rb') as f:
        state_dict = torch.load(f)
        model.load_state_dict(state_dict)
    torch.multiprocessing.set_start_method('fork')
    processor = SentenceProcessor(input_mapping, model, device)
    return processor