示例#1
0
def load_data_to_crop(path_to_img, x_scale, y_scale, z_scale,
                        normalize, mu, sig):
    # read image data
    img, _, img_ext = load_data(path_to_img, 'first_queue', return_extension=True)
    if img is None:
        InputError.message = "Invalid image data %s." %(os.path.basename(path_to_img))
        raise InputError()
    z_shape, y_shape, x_shape = img.shape
    img = img.astype(np.float32)
    img_z = img_resize(img, z_shape, y_scale, x_scale)
    img_y = np.swapaxes(img_resize(img,z_scale,y_shape,x_scale),0,1)
    img_x = np.swapaxes(img_resize(img,z_scale,y_scale,x_shape),0,2)
    img = np.append(img_z,img_y,axis=0)
    img = np.append(img,img_x,axis=0)
    img -= np.amin(img)
    img /= np.amax(img)
    if normalize:
        mu_tmp, sig_tmp = np.mean(img), np.std(img)
        img = (img - mu_tmp) / sig_tmp
        img = img * sig + mu
        img[img<0] = 0
        img[img>1] = 1
    img = np.uint8(img*255)

    img_rgb = np.empty((img.shape + (3,)), dtype=np.uint8)
    for i in range(3):
        img_rgb[...,i] = img
    return img_rgb, z_shape, y_shape, x_shape
示例#2
0
def load_prediction_data(path_to_img, channels, x_scale, y_scale, z_scale,
                         normalize, mu, sig, region_of_interest):

    # read image data
    img, img_header, img_ext = load_data(path_to_img,
                                         'first_queue',
                                         return_extension=True)
    if img is None:
        InputError.message = "Invalid image data %s." % (
            os.path.basename(path_to_img))
        raise InputError()
    if img_ext != '.am':
        img_header = None
    z_shape, y_shape, x_shape = img.shape

    # automatic cropping of image to region of interest
    if np.any(region_of_interest):
        min_z, max_z, min_y, max_y, min_x, max_x = region_of_interest[:]
        min_z = min(min_z, z_shape)
        min_y = min(min_y, y_shape)
        min_x = min(min_x, x_shape)
        max_z = min(max_z, z_shape)
        max_y = min(max_y, y_shape)
        max_x = min(max_x, x_shape)
        if max_z - min_z < z_shape:
            min_z, max_z = 0, z_shape
        if max_y - min_y < y_shape:
            min_y, max_y = 0, y_shape
        if max_x - min_x < x_shape:
            min_x, max_x = 0, x_shape
        img = np.copy(img[min_z:max_z, min_y:max_y, min_x:max_x], order='C')
        region_of_interest = np.array([
            min_z, max_z, min_y, max_y, min_x, max_x, z_shape, y_shape, x_shape
        ])
        z_shape, y_shape, x_shape = max_z - min_z, max_y - min_y, max_x - min_x

    # scale image data
    img = img.astype(np.float32)
    img = img_resize(img, z_scale, y_scale, x_scale)
    img -= np.amin(img)
    img /= np.amax(img)
    if normalize:
        mu_tmp, sig_tmp = np.mean(img), np.std(img)
        img = (img - mu_tmp) / sig_tmp
        img = img * sig + mu
        img[img < 0] = 0
        img[img > 1] = 1

    # compute position data
    position = None
    if channels == 2:
        position = np.empty((z_scale, y_scale, x_scale), dtype=np.float32)
        position = compute_position(position, z_scale, y_scale, x_scale)
        position = np.sqrt(position)
        position /= np.amax(position)

    return img, img_header, position, z_shape, y_shape, x_shape, region_of_interest
示例#3
0
def predict_pre_final(img, path_to_model, x_scale, y_scale, z_scale, z_patch, y_patch, x_patch, \
                      normalize, mu, sig, channels, stride_size, batch_size):

    # img shape
    z_shape, y_shape, x_shape = img.shape

    # load position data
    if channels == 2:
        position = np.empty((z_scale, y_scale, x_scale), dtype=np.float32)
        position = compute_position(position, z_scale, y_scale, x_scale)
        position = np.sqrt(position)
        position /= np.amax(position)

    # resize img data
    img = img.astype(np.float32)
    img = img_resize(img, z_scale, y_scale, x_scale)
    img -= np.amin(img)
    img /= np.amax(img)
    if normalize:
        mu_tmp, sig_tmp = np.mean(img), np.std(img)
        img = (img - mu_tmp) / sig_tmp
        img = img * sig + mu
        img[img<0] = 0
        img[img>1] = 1

    # img shape
    zsh, ysh, xsh = img.shape

    # get number of 3D-patches
    nb = 0
    for k in range(0, zsh-z_patch+1, stride_size):
        for l in range(0, ysh-y_patch+1, stride_size):
            for m in range(0, xsh-x_patch+1, stride_size):
                nb += 1

    # allocate memory
    x_test = np.empty((nb, z_patch, y_patch, x_patch, channels), dtype=img.dtype)

    # create testing set
    nb = 0
    for k in range(0, zsh-z_patch+1, stride_size):
        for l in range(0, ysh-y_patch+1, stride_size):
            for m in range(0, xsh-x_patch+1, stride_size):
                x_test[nb,:,:,:,0] = img[k:k+z_patch, l:l+y_patch, m:m+x_patch]
                if channels == 2:
                    x_test[nb,:,:,:,1] = position[k:k+z_patch, l:l+y_patch, m:m+x_patch]
                nb += 1

    # reshape testing set
    x_test = x_test.reshape(nb, z_patch, y_patch, x_patch, channels)

    # create a MirroredStrategy
    if os.name == 'nt':
        cdo = tf.distribute.HierarchicalCopyAllReduce()
    else:
        cdo = tf.distribute.NcclAllReduce()
    strategy = tf.distribute.MirroredStrategy(cross_device_ops=cdo)

    # load model
    with strategy.scope():
        model = load_model(str(path_to_model))

    # predict
    tmp = model.predict(x_test, batch_size=batch_size, verbose=0, steps=None)

    # create final
    final = np.zeros((zsh, ysh, xsh, tmp.shape[4]), dtype=np.float32)
    nb = 0
    for k in range(0, zsh-z_patch+1, stride_size):
        for l in range(0, ysh-y_patch+1, stride_size):
            for m in range(0, xsh-x_patch+1, stride_size):
                final[k:k+z_patch, l:l+y_patch, m:m+x_patch] += tmp[nb]
                nb += 1

    # get final
    out = np.argmax(final, axis=3)
    out = out.astype(np.uint8)

    # rescale final to input size
    np_unique = np.unique(out)
    label = np.zeros((z_shape, y_shape, x_shape), dtype=out.dtype)
    for k in np_unique:
        tmp = np.zeros_like(out)
        tmp[out==k] = 1
        tmp = img_resize(tmp, z_shape, y_shape, x_shape)
        label[tmp==1] = k

    return label
示例#4
0
def predict_semantic_segmentation(img, position, path_to_model, path_to_final,
    z_patch, y_patch, x_patch, z_shape, y_shape, x_shape, compress, header,
    img_header, channels, stride_size, allLabels, batch_size, region_of_interest):

    # img shape
    zsh, ysh, xsh = img.shape

    # list of IDs
    list_IDs = []

    # get nIds of patches
    for k in range(0, zsh-z_patch+1, stride_size):
        for l in range(0, ysh-y_patch+1, stride_size):
            for m in range(0, xsh-x_patch+1, stride_size):
                list_IDs.append(k*ysh*xsh+l*xsh+m)

    # make length of list divisible by batch size
    rest = batch_size - (len(list_IDs) % batch_size)
    list_IDs = list_IDs + list_IDs[:rest]

    # parameters
    params = {'dim': (z_patch, y_patch, x_patch),
              'dim_img': (zsh, ysh, xsh),
              'batch_size': batch_size,
              'n_channels': channels}

    # data generator
    predict_generator = PredictDataGenerator(img, position, list_IDs, **params)

    # create a MirroredStrategy
    if os.name == 'nt':
        cdo = tf.distribute.HierarchicalCopyAllReduce()
    else:
        cdo = tf.distribute.NcclAllReduce()
    strategy = tf.distribute.MirroredStrategy(cross_device_ops=cdo)

    # load model
    with strategy.scope():
        model = load_model(str(path_to_model))

    # predict
    probabilities = model.predict(predict_generator, verbose=0, steps=None)

    # create final
    final = np.zeros((zsh, ysh, xsh, probabilities.shape[4]), dtype=np.float32)
    nb = 0
    for k in range(0, zsh-z_patch+1, stride_size):
        for l in range(0, ysh-y_patch+1, stride_size):
            for m in range(0, xsh-x_patch+1, stride_size):
                final[k:k+z_patch, l:l+y_patch, m:m+x_patch] += probabilities[nb]
                nb += 1

    # get final
    out = np.argmax(final, axis=3)
    out = out.astype(np.uint8)

    # rescale final to input size
    np_unique = np.unique(out)
    label = np.zeros((z_shape, y_shape, x_shape), dtype=out.dtype)
    for k in np_unique:
        tmp = np.zeros_like(out)
        tmp[out==k] = 1
        tmp = img_resize(tmp, z_shape, y_shape, x_shape)
        label[tmp==1] = k

    # revert automatic cropping
    if np.any(region_of_interest):
        min_z,max_z,min_y,max_y,min_x,max_x,z_shape,y_shape,x_shape = region_of_interest[:]
        tmp = np.zeros((z_shape, y_shape, x_shape), dtype=out.dtype)
        tmp[min_z:max_z,min_y:max_y,min_x:max_x] = label
        label = np.copy(tmp)

    # save final
    label = label.astype(np.uint8)
    label = get_labels(label, allLabels)
    if header is not None:
        header = get_image_dimensions(header, label)
        if img_header is not None:
            header = get_physical_size(header, img_header)
    save_data(path_to_final, label, header=header, compress=compress)
示例#5
0
def load_training_data(normalize, img_list, label_list, channels, x_scale, y_scale, z_scale,
        crop_data, configuration_data=None, allLabels=None, x_puffer=25, y_puffer=25, z_puffer=25):

    # get filenames
    img_names, label_names = [], []
    for img_name, label_name in zip(img_list, label_list):

        # check for tarball
        img_dir, img_ext = os.path.splitext(img_name)
        if img_ext == '.gz':
            img_dir, img_ext = os.path.splitext(img_dir)

        label_dir, label_ext = os.path.splitext(label_name)
        if label_ext == '.gz':
            label_dir, label_ext = os.path.splitext(label_dir)

        if (img_ext == '.tar' and label_ext == '.tar') or (os.path.isdir(img_name) and os.path.isdir(label_name)):

            # extract files if necessary
            if img_ext == '.tar' and not os.path.exists(img_dir):
                tar = tarfile.open(img_name)
                tar.extractall(path=img_dir)
                tar.close()
            if label_ext == '.tar' and not os.path.exists(label_dir):
                tar = tarfile.open(label_name)
                tar.extractall(path=label_dir)
                tar.close()

            for data_type in ['.am','.tif','.tiff','.hdr','.mhd','.mha','.nrrd','.nii','.nii.gz']:
                tmp_img_names = glob(img_dir+'/**/*'+data_type, recursive=True)
                tmp_label_names = glob(label_dir+'/**/*'+data_type, recursive=True)
                tmp_img_names = sorted(tmp_img_names)
                tmp_label_names = sorted(tmp_label_names)
                img_names.extend(tmp_img_names)
                label_names.extend(tmp_label_names)
            if len(img_names)==0:
                InputError.message = "Invalid image TAR file."
                raise InputError()
            if len(label_names)==0:
                InputError.message = "Invalid label TAR file."
                raise InputError()
        else:
            img_names.append(img_name)
            label_names.append(label_name)

    # load first label
    a, header, extension = load_data(label_names[0], 'first_queue', True)
    if a is None:
        InputError.message = "Invalid label data %s." %(os.path.basename(label_names[0]))
        raise InputError()
    if crop_data:
        argmin_z,argmax_z,argmin_y,argmax_y,argmin_x,argmax_x = predict_blocksize(a, x_puffer, y_puffer, z_puffer)
        a = np.copy(a[argmin_z:argmax_z,argmin_y:argmax_y,argmin_x:argmax_x], order='C')
    a = a.astype(np.uint8)
    np_unique = np.unique(a)
    label = np.zeros((z_scale, y_scale, x_scale), dtype=a.dtype)
    for k in np_unique:
        tmp = np.zeros_like(a)
        tmp[a==k] = 1
        tmp = img_resize(tmp, z_scale, y_scale, x_scale)
        label[tmp==1] = k

    # load first img
    img, _ = load_data(img_names[0], 'first_queue')
    if img is None:
        InputError.message = "Invalid image data %s." %(os.path.basename(img_names[0]))
        raise InputError()
    if crop_data:
        img = np.copy(img[argmin_z:argmax_z,argmin_y:argmax_y,argmin_x:argmax_x], order='C')
    img = img.astype(np.float32)
    img = img_resize(img, z_scale, y_scale, x_scale)
    img -= np.amin(img)
    img /= np.amax(img)
    if configuration_data is not None:
        mu, sig = configuration_data[5], configuration_data[6]
        mu_tmp, sig_tmp = np.mean(img), np.std(img)
        img = (img - mu_tmp) / sig_tmp
        img = img * sig + mu
    else:
        mu, sig = np.mean(img), np.std(img)

    for img_name, label_name in zip(img_names[1:], label_names[1:]):

        # append label
        a, _ = load_data(label_name, 'first_queue')
        if a is None:
            InputError.message = "Invalid label data %s." %(os.path.basename(name))
            raise InputError()
        if crop_data:
            argmin_z,argmax_z,argmin_y,argmax_y,argmin_x,argmax_x = predict_blocksize(a, x_puffer, y_puffer, z_puffer)
            a = np.copy(a[argmin_z:argmax_z,argmin_y:argmax_y,argmin_x:argmax_x], order='C')
        a = a.astype(np.uint8)
        np_unique = np.unique(a)
        next_label = np.zeros((z_scale, y_scale, x_scale), dtype=a.dtype)
        for k in np_unique:
            tmp = np.zeros_like(a)
            tmp[a==k] = 1
            tmp = img_resize(tmp, z_scale, y_scale, x_scale)
            next_label[tmp==1] = k
        label = np.append(label, next_label, axis=0)

        # append image
        a, _ = load_data(img_name, 'first_queue')
        if a is None:
            InputError.message = "Invalid image data %s." %(os.path.basename(name))
            raise InputError()
        if crop_data:
            a = np.copy(a[argmin_z:argmax_z,argmin_y:argmax_y,argmin_x:argmax_x], order='C')
        a = a.astype(np.float32)
        a = img_resize(a, z_scale, y_scale, x_scale)
        a -= np.amin(a)
        a /= np.amax(a)
        if normalize:
            mu_tmp, sig_tmp = np.mean(a), np.std(a)
            a = (a - mu_tmp) / sig_tmp
            a = a * sig + mu
        img = np.append(img, a, axis=0)

    # scale image data to [0,1]
    img[img<0] = 0
    img[img>1] = 1

    # compute position data
    position = None
    if channels == 2:
        position = np.empty((z_scale, y_scale, x_scale), dtype=np.float32)
        position = compute_position(position, z_scale, y_scale, x_scale)
        position = np.sqrt(position)
        position /= np.amax(position)
        for k in range(len(img_names[1:])):
            a = np.copy(position)
            position = np.append(position, a, axis=0)

    # labels must be in ascending order
    if allLabels is not None:
        counts = None
        for k, l in enumerate(allLabels):
            label[label==l] = k
    else:
        allLabels, counts = np.unique(label, return_counts=True)
        for k, l in enumerate(allLabels):
            label[label==l] = k

    # configuration data
    configuration_data = np.array([channels, x_scale, y_scale, z_scale, normalize, mu, sig])

    return img, label, position, allLabels, configuration_data, header, extension, counts
示例#6
0
def load_training_data(normalize,
                       img_dir,
                       label_dir,
                       channels,
                       x_scale,
                       y_scale,
                       z_scale,
                       crop_data,
                       configuration_data=None,
                       allLabels=None):

    # get filenames
    img_names, label_names = [], []
    for data_type in [
            '.am', '.tif', '.tiff', '.hdr', '.mhd', '.mha', '.nrrd', '.nii',
            '.nii.gz'
    ]:
        tmp_img_names = glob(img_dir + '/**/*' + data_type, recursive=True)
        tmp_label_names = glob(label_dir + '/**/*' + data_type, recursive=True)
        tmp_img_names = sorted(tmp_img_names)
        tmp_label_names = sorted(tmp_label_names)
        img_names.extend(tmp_img_names)
        label_names.extend(tmp_label_names)

    # load first label
    region_of_interest = None
    a, header, extension = load_data(label_names[0], 'first_queue', True)
    if a is None:
        InputError.message = "Invalid label data %s." % (os.path.basename(
            label_names[0]))
        raise InputError()
    if crop_data:
        region_of_interest = np.zeros(6)
        argmin_z, argmax_z, argmin_y, argmax_y, argmin_x, argmax_x = predict_blocksize(
            a)
        a = np.copy(a[argmin_z:argmax_z, argmin_y:argmax_y, argmin_x:argmax_x],
                    order='C')
        region_of_interest += [
            argmin_z, argmax_z, argmin_y, argmax_y, argmin_x, argmax_x
        ]
    a = a.astype(np.uint8)
    np_unique = np.unique(a)
    label = np.zeros((z_scale, y_scale, x_scale), dtype=a.dtype)
    for k in np_unique:
        tmp = np.zeros_like(a)
        tmp[a == k] = 1
        tmp = img_resize(tmp, z_scale, y_scale, x_scale)
        label[tmp == 1] = k

    # load first img
    img, _ = load_data(img_names[0], 'first_queue')
    if img is None:
        InputError.message = "Invalid image data %s." % (os.path.basename(
            img_names[0]))
        raise InputError()
    if crop_data:
        img = np.copy(img[argmin_z:argmax_z, argmin_y:argmax_y,
                          argmin_x:argmax_x],
                      order='C')
    img = img.astype(np.float32)
    img = img_resize(img, z_scale, y_scale, x_scale)
    img -= np.amin(img)
    img /= np.amax(img)
    if configuration_data is not None:
        mu, sig = configuration_data[5], configuration_data[6]
        mu_tmp, sig_tmp = np.mean(img), np.std(img)
        img = (img - mu_tmp) / sig_tmp
        img = img * sig + mu
    else:
        mu, sig = np.mean(img), np.std(img)
    for img_name, label_name in zip(img_names[1:], label_names[1:]):

        # append label
        a, _ = load_data(label_name, 'first_queue')
        if a is None:
            InputError.message = "Invalid label data %s." % (
                os.path.basename(name))
            raise InputError()
        if crop_data:
            argmin_z, argmax_z, argmin_y, argmax_y, argmin_x, argmax_x = predict_blocksize(
                a)
            a = np.copy(a[argmin_z:argmax_z, argmin_y:argmax_y,
                          argmin_x:argmax_x],
                        order='C')
            region_of_interest += [
                argmin_z, argmax_z, argmin_y, argmax_y, argmin_x, argmax_x
            ]
        a = a.astype(np.uint8)
        np_unique = np.unique(a)
        next_label = np.zeros((z_scale, y_scale, x_scale), dtype=a.dtype)
        for k in np_unique:
            tmp = np.zeros_like(a)
            tmp[a == k] = 1
            tmp = img_resize(tmp, z_scale, y_scale, x_scale)
            next_label[tmp == 1] = k
        label = np.append(label, next_label, axis=0)

        # append image
        a, _ = load_data(img_name, 'first_queue')
        if a is None:
            InputError.message = "Invalid image data %s." % (
                os.path.basename(name))
            raise InputError()
        if crop_data:
            a = np.copy(a[argmin_z:argmax_z, argmin_y:argmax_y,
                          argmin_x:argmax_x],
                        order='C')
        a = a.astype(np.float32)
        a = img_resize(a, z_scale, y_scale, x_scale)
        a -= np.amin(a)
        a /= np.amax(a)
        if normalize:
            mu_tmp, sig_tmp = np.mean(a), np.std(a)
            a = (a - mu_tmp) / sig_tmp
            a = a * sig + mu
        img = np.append(img, a, axis=0)

    # automatic cropping
    if crop_data:
        region_of_interest /= float(len(img_names))
        region_of_interest = np.round(region_of_interest)
        region_of_interest[region_of_interest < 0] = 0
        region_of_interest = region_of_interest.astype(int)

    # scale image data to [0,1]
    img[img < 0] = 0
    img[img > 1] = 1

    # compute position data
    position = None
    if channels == 2:
        position = np.empty((z_scale, y_scale, x_scale), dtype=np.float32)
        position = compute_position(position, z_scale, y_scale, x_scale)
        position = np.sqrt(position)
        position /= np.amax(position)
        for k in range(len(img_names[1:])):
            a = np.copy(position)
            position = np.append(position, a, axis=0)

    # labels must be in ascending order
    if allLabels is not None:
        counts = None
        for k, l in enumerate(allLabels):
            label[label == l] = k
    else:
        allLabels, counts = np.unique(label, return_counts=True)
        for k, l in enumerate(allLabels):
            label[label == l] = k

    # configuration data
    configuration_data = np.array(
        [channels, x_scale, y_scale, z_scale, normalize, mu, sig])

    return img, label, position, allLabels, configuration_data, header, extension, region_of_interest, counts
示例#7
0
def load_cropping_training_data(normalize, img_list, label_list, x_scale, y_scale, z_scale, mu=None, sig=None):

    # get filenames
    img_names, label_names = [], []
    for img_name, label_name in zip(img_list, label_list):

        # check for tarball
        img_dir, img_ext = os.path.splitext(img_name)
        if img_ext == '.gz':
            img_dir, img_ext = os.path.splitext(img_dir)

        label_dir, label_ext = os.path.splitext(label_name)
        if label_ext == '.gz':
            label_dir, label_ext = os.path.splitext(label_dir)

        if (img_ext == '.tar' and label_ext == '.tar') or (os.path.isdir(img_name) and os.path.isdir(label_name)):

            # extract files if necessary
            if img_ext == '.tar' and not os.path.exists(img_dir):
                tar = tarfile.open(img_name)
                tar.extractall(path=img_dir)
                tar.close()
            if label_ext == '.tar' and not os.path.exists(label_dir):
                tar = tarfile.open(label_name)
                tar.extractall(path=label_dir)
                tar.close()

            for data_type in ['.am','.tif','.tiff','.hdr','.mhd','.mha','.nrrd','.nii','.nii.gz']:
                tmp_img_names = glob(img_dir+'/**/*'+data_type, recursive=True)
                tmp_label_names = glob(label_dir+'/**/*'+data_type, recursive=True)
                tmp_img_names = sorted(tmp_img_names)
                tmp_label_names = sorted(tmp_label_names)
                img_names.extend(tmp_img_names)
                label_names.extend(tmp_label_names)
            if len(img_names)==0:
                InputError.message = "Invalid image TAR file."
                raise InputError()
            if len(label_names)==0:
                InputError.message = "Invalid label TAR file."
                raise InputError()
        else:
            img_names.append(img_name)
            label_names.append(label_name)

    # load first label
    a, header, extension = load_data(label_names[0], 'first_queue', True)
    if a is None:
        InputError.message = "Invalid label data %s." %(os.path.basename(label_names[0]))
        raise InputError()
    a = a.astype(np.uint8)
    label_z = np.any(a,axis=(1,2))
    label_y = np.any(a,axis=(0,2))
    label_x = np.any(a,axis=(0,1))
    label = np.append(label_z,label_y,axis=0)
    label = np.append(label,label_x,axis=0)

    # load first img
    img, _ = load_data(img_names[0], 'first_queue')
    if img is None:
        InputError.message = "Invalid image data %s." %(os.path.basename(img_names[0]))
        raise InputError()
    img = img.astype(np.float32)
    img_z = img_resize(img, a.shape[0], y_scale, x_scale)
    img_y = np.swapaxes(img_resize(img, z_scale, a.shape[1], x_scale),0,1)
    img_x = np.swapaxes(img_resize(img, z_scale, y_scale, a.shape[2]),0,2)
    img = np.append(img_z,img_y,axis=0)
    img = np.append(img,img_x,axis=0)
    img -= np.amin(img)
    img /= np.amax(img)
    if mu is not None and normalize:
        mu_tmp, sig_tmp = np.mean(img), np.std(img)
        img = (img - mu_tmp) / sig_tmp
        img = img * sig + mu
        img[img<0] = 0
        img[img>1] = 1
    else:
        mu, sig = np.mean(img), np.std(img)
    img = np.uint8(img*255)

    for img_name, label_name in zip(img_names[1:], label_names[1:]):

        # append label
        a, _ = load_data(label_name, 'first_queue')
        if a is None:
            InputError.message = "Invalid label data %s." %(os.path.basename(name))
            raise InputError()
        a = a.astype(np.uint8)
        next_label_z = np.any(a,axis=(1,2))
        next_label_y = np.any(a,axis=(0,2))
        next_label_x = np.any(a,axis=(0,1))
        label = np.append(label,next_label_z,axis=0)
        label = np.append(label,next_label_y,axis=0)
        label = np.append(label,next_label_x,axis=0)

        # append image
        a, _ = load_data(img_name, 'first_queue')
        if a is None:
            InputError.message = "Invalid image data %s." %(os.path.basename(name))
            raise InputError()
        a = a.astype(np.float32)
        img_z = img_resize(a, a.shape[0], y_scale, x_scale)
        img_y = np.swapaxes(img_resize(a, z_scale, a.shape[1], x_scale),0,1)
        img_x = np.swapaxes(img_resize(a, z_scale, y_scale, a.shape[2]),0,2)
        next_img = np.append(img_z,img_y,axis=0)
        next_img = np.append(next_img,img_x,axis=0)
        next_img -= np.amin(next_img)
        next_img /= np.amax(next_img)
        if normalize:
            mu_tmp, sig_tmp = np.mean(next_img), np.std(next_img)
            next_img = (next_img - mu_tmp) / sig_tmp
            next_img = next_img * sig + mu
            next_img[next_img<0] = 0
            next_img[next_img>1] = 1
        next_img = np.uint8(next_img*255)
        img = np.append(img, next_img, axis=0)

    img_rgb = np.empty((img.shape + (3,)), dtype=np.uint8)
    for i in range(3):
        img_rgb[...,i] = img

    # compute position data
    position = None

    return img_rgb, label, position, mu, sig, header, extension, len(img_names)