def load_wav_as_mfcc_delta(fname, target_size=None, noise_files=None, augment_with_noise=False, class_dir=None): (fs, signal) = utils.read_wave_file(fname) if class_dir: signal = da.same_class_augmentation(signal, class_dir) if augment_with_noise: signal = da.noise_augmentation(signal, noise_files) mfcc = librosa.feature.mfcc(signal, fs, n_mfcc=target_size[0]) mfcc_delta_3 = librosa.feature.delta(mfcc, width=3, order=1) mfcc_delta_11 = librosa.feature.delta(mfcc, width=11, order=1) mfcc_delta_19 = librosa.feature.delta(mfcc, width=19, order=1) if target_size: mfcc = scipy.misc.imresize(mfcc, target_size) mfcc_delta_3 = scipy.misc.imresize(mfcc_delta_3, target_size) mfcc_delta_11 = scipy.misc.imresize(mfcc_delta_11, target_size) mfcc_delta_19 = scipy.misc.imresize(mfcc_delta_19, target_size) mfcc = mfcc.reshape(mfcc.shape[0], mfcc.shape[1], 1) mfcc_delta_3 = mfcc_delta_3.reshape(mfcc_delta_3.shape[0], mfcc_delta_3.shape[1], 1) mfcc_delta_11 = mfcc_delta_11.reshape(mfcc_delta_11.shape[0], mfcc_delta_11.shape[1], 1) mfcc_delta_19 = mfcc_delta_19.reshape(mfcc_delta_19.shape[0], mfcc_delta_19.shape[1], 1) mfcc_delta = np.concatenate( [mfcc, mfcc_delta_3, mfcc_delta_11, mfcc_delta_19], axis=2) return mfcc_delta
def load_wav_as_tempogram(fname, target_size=None, noise_files=None, augment_with_noise=False, class_dir=None): (fs, signal) = utils.read_wave_file(fname) if class_dir: signal = da.same_class_augmentation(signal, class_dir) if augment_with_noise: signal = da.noise_augmentation(signal, noise_files) tempogram = sp.wave_to_tempogram(signal, fs) if target_size: tempogram = scipy.misc.imresize(tempogram, target_size) tempogram = tempogram.reshape((tempogram.shape[0], tempogram.shape[1], 1)) return tempogram
def load_wav_as_mfcc(fname, target_size=None, noise_files=None, augment_with_noise=False, class_dir=None): (fs, signal) = utils.read_wave_file(fname) if class_dir: signal = da.same_class_augmentation(signal, class_dir) if augment_with_noise: signal = da.noise_augmentation(signal, noise_files) mfcc = librosa.feature.mfcc(signal, fs, n_mfcc=target_size[0]) if target_size: mfcc = scipy.misc.imresize(mfcc, target_size) mfcc = mfcc.reshape(mfcc.shape[0], mfcc.shape[1], 1) return mfcc
def same_class_augmentation(): da.same_class_augmentation(x, class_dir)