def test_bitwise_xor_bool(self):
     t = blaze.array(True)
     f = blaze.array(False)
     self.assertEqual(dd_as_py((t ^ t)._data), False)
     self.assertEqual(dd_as_py((t ^ f)._data), True)
     self.assertEqual(dd_as_py((f ^ t)._data), True)
     self.assertEqual(dd_as_py((f ^ f)._data), False)
 def test_bitwise_and_bool(self):
     t = blaze.array(True)
     f = blaze.array(False)
     self.assertEqual(dd_as_py((t & t)._data), True)
     self.assertEqual(dd_as_py((t & f)._data), False)
     self.assertEqual(dd_as_py((f & t)._data), False)
     self.assertEqual(dd_as_py((f & f)._data), False)
示例#3
0
文件: test_calc.py 项目: mwiebe/blaze
 def test_product(self):
     # Sanity check of reduction op
     self.assertEqual(dd_as_py(blaze.eval(blaze.product(5))._data), 5)
     self.assertEqual(dd_as_py(blaze.eval(blaze.product([]))._data), 1)
     self.assertEqual(dd_as_py(blaze.eval(blaze.product([3, -2]))._data),
                      -6)
     self.assertEqual(dd_as_py(blaze.eval(blaze.product([1.5, 2.0]))._data),
                      3.0)
示例#4
0
 def test_add(self):
     types = ['int8', 'int16', 'int32', 'int64']
     for type_ in types:
         a = blaze.array(range(3), dshape=type_)
         c = blaze.eval(a+a)
         self.assertEqual(dd_as_py(c._data), [0, 2, 4])
         c = blaze.eval(((a+a)*a))
         self.assertEqual(dd_as_py(c._data), [0, 2, 8])
    def test_descriptor_setitem(self):
        dd = HDF5DataDescriptor(self.hdf5_file, '/g/a2')

        self.assertEqual(dd.dshape, datashape.dshape('2, 3, int64'))
        dd[1,2] = 10
        self.assertEqual(dd_as_py(dd[1,2]), 10)
        dd[1] = [10, 11, 12]
        self.assertEqual(dd_as_py(dd[1]), [10, 11, 12])
示例#6
0
文件: test_calc.py 项目: mwiebe/blaze
 def test_max(self):
     # Sanity check of reduction op
     self.assertEqual(dd_as_py(blaze.eval(blaze.max(5))._data), 5)
     self.assertRaises(ValueError, blaze.eval, blaze.max([]))
     self.assertEqual(dd_as_py(blaze.eval(blaze.max([3, -2]))._data),
                      3)
     self.assertEqual(dd_as_py(blaze.eval(blaze.max([1.5, 2.0]))._data),
                      2.0)
示例#7
0
文件: test_calc.py 项目: mwiebe/blaze
 def test_any(self):
     # Sanity check of reduction op
     self.assertEqual(dd_as_py(blaze.eval(blaze.any(True))._data), True)
     self.assertEqual(dd_as_py(blaze.eval(blaze.any(False))._data), False)
     self.assertEqual(dd_as_py(blaze.eval(blaze.any(blaze.array([], dshape='0 * bool')))._data), False)
     self.assertEqual(dd_as_py(blaze.eval(blaze.any([False, True]))._data),
                      True)
     self.assertEqual(dd_as_py(blaze.eval(blaze.any([False, False]))._data),
                      False)
    def test_descriptor_getitem_types(self):
        dd = HDF5DataDescriptor(self.hdf5_file, '/g/a2')

        self.assertEqual(dd.dshape, datashape.dshape('2, 3, int64'))
        # Indexing should produce DyNDDataDescriptor instances
        self.assertTrue(isinstance(dd[0], DyNDDataDescriptor))
        self.assertEqual(dd_as_py(dd[0]), [1,2,3])
        self.assertTrue(isinstance(dd[1,2], DyNDDataDescriptor))
        self.assertEqual(dd_as_py(dd[1,2]), 1)
示例#9
0
 def test_create_record(self):
     # A simple record array
     a = blaze.array([(10, 3.5), (15, 2.25)], dshape="var, {val: int32; flt: float32}")
     self.assertEqual(dd_as_py(a._data), [{"val": 10, "flt": 3.5}, {"val": 15, "flt": 2.25}])
     # Test field access via attributes
     aval = a.val
     self.assertEqual(dd_as_py(aval._data), [10, 15])
     aflt = a.flt
     self.assertEqual(dd_as_py(aflt._data), [3.5, 2.25])
    def test_var_dim(self):
        a = nd.array([[1,2,3], [4,5], [6]])
        dd = DyNDDataDescriptor(a)

        self.assertEqual(dd.dshape, datashape.dshape('3, var, int32'))
        self.assertEqual(dd_as_py(dd), [[1,2,3], [4,5], [6]])
        self.assertEqual(dd_as_py(dd[0]), [1,2,3])
        self.assertEqual(dd_as_py(dd[1]), [4,5])
        self.assertEqual(dd_as_py(dd[2]), [6])
示例#11
0
 def test_ragged(self):
     a = blaze.array([[1], [2, 3], [4, 5, 6]])
     b = blaze.array([[1, 2, 3], [4, 5], [6]])
     c = blaze.eval(a + b)
     self.assertEqual(dd_as_py(c._data),
                 [[2, 3, 4], [6, 8], [10, 11, 12]])
     c = blaze.eval(2 * a - b)
     self.assertEqual(dd_as_py(c._data),
                 [[1, 0, -1], [0, 1], [2, 4, 6]])
示例#12
0
 def test_add_with_pyobj(self):
     a = blaze.array(3) + 3
     self.assertEqual(dd_as_py(a._data), 6)
     a = 3 + blaze.array(4)
     self.assertEqual(dd_as_py(a._data), 7)
     a = blaze.array([1, 2]) + 4
     self.assertEqual(dd_as_py(a._data), [5, 6])
     a = [1, 2] + blaze.array(5)
     self.assertEqual(dd_as_py(a._data), [6, 7])
    def test_descriptor_getitem_types(self):
        a = np.arange(6).reshape(2,3)
        dd = NumPyDataDescriptor(a)

        # Indexing should produce NumPyDataDescriptor instances
        self.assertTrue(isinstance(dd[0], NumPyDataDescriptor))
        self.assertEqual(dd_as_py(dd[0]), [0,1,2])
        self.assertTrue(isinstance(dd[1,2], NumPyDataDescriptor))
        self.assertEqual(dd_as_py(dd[1,2]), 5)
    def test_descriptor_getitem_types(self):
        a = nd.array([[1, 2, 3], [4, 5, 6]])
        dd = DyNDDataDescriptor(a)

        self.assertEqual(dd.dshape, datashape.dshape('2, 3, int32'))
        # Indexing should produce DyNDDataDescriptor instances
        self.assertTrue(isinstance(dd[0], DyNDDataDescriptor))
        self.assertEqual(dd_as_py(dd[0]), [1,2,3])
        self.assertTrue(isinstance(dd[1,2], DyNDDataDescriptor))
        self.assertEqual(dd_as_py(dd[1,2]), 6)
    def test_scalar(self):
        a = ffi.new('int *', 3)
        dd = data_descriptor_from_cffi(ffi, a, writable=True)
        self.assertEqual(dd.dshape, dshape('int32'))
        self.assertEqual(dd_as_py(dd), 3)
        self.assertTrue(isinstance(dd_as_py(dd), int))

        a = ffi.new('float *', 3.25)
        dd = data_descriptor_from_cffi(ffi, a, writable=True)
        self.assertEqual(dd.dshape, dshape('float32'))
        self.assertEqual(dd_as_py(dd), 3.25)
        self.assertTrue(isinstance(dd_as_py(dd), float))
    def test_1d_array(self):
        # An array where the size is in the type
        a = ffi.new('short[32]', [2*i for i in range(32)])
        dd = data_descriptor_from_cffi(ffi, a, writable=True)
        self.assertEqual(dd.dshape, dshape('32 * int16'))
        self.assertEqual(dd_as_py(dd), [2*i for i in range(32)])

        # An array where the size is not in the type
        a = ffi.new('double[]', [1.5*i for i in range(32)])
        dd = data_descriptor_from_cffi(ffi, a, writable=True)
        self.assertEqual(dd.dshape, dshape('32 * float64'))
        self.assertEqual(dd_as_py(dd), [1.5*i for i in range(32)])
    def test_scalar(self):
        a = ctypes.c_int(3)
        dd = data_descriptor_from_ctypes(a, writable=True)
        self.assertEqual(dd.dshape, dshape('int32'))
        self.assertEqual(dd_as_py(dd), 3)
        self.assertTrue(isinstance(dd_as_py(dd), int))

        a = ctypes.c_float(3.25)
        dd = data_descriptor_from_ctypes(a, writable=True)
        self.assertEqual(dd.dshape, dshape('float32'))
        self.assertEqual(dd_as_py(dd), 3.25)
        self.assertTrue(isinstance(dd_as_py(dd), float))
    def test_2d_array(self):
        # An array where the leading array size is in the type
        vals = [[2**i + j for i in range(35)] for j in range(32)]
        a = ffi.new('long long[32][35]', vals)
        dd = data_descriptor_from_cffi(ffi, a, writable=True)
        self.assertEqual(dd.dshape, dshape('32 * 35 * int64'))
        self.assertEqual(dd_as_py(dd), vals)

        # An array where the leading array size is not in the type
        vals = [[a + b*2 for a in range(35)] for b in range(32)]
        a = ffi.new('unsigned char[][35]', vals)
        dd = data_descriptor_from_cffi(ffi, a, writable=True)
        self.assertEqual(dd.dshape, dshape('32 * 35 * uint8'))
        self.assertEqual(dd_as_py(dd), vals)
    def test_1d_array(self):
        a = (ctypes.c_short * 32)()
        for i in range(32):
            a[i] = 2*i
        dd = data_descriptor_from_ctypes(a, writable=True)
        self.assertEqual(dd.dshape, dshape('32 * int16'))
        self.assertEqual(dd_as_py(dd), [2*i for i in range(32)])

        a = (ctypes.c_double * 32)()
        for i in range(32):
            a[i] = 1.5*i
        dd = data_descriptor_from_ctypes(a, writable=True)
        self.assertEqual(dd.dshape, dshape('32 * float64'))
        self.assertEqual(dd_as_py(dd), [1.5*i for i in range(32)])
示例#20
0
文件: test_calc.py 项目: mwiebe/blaze
 def test_sum_zerosize(self):
     # Empty sum operations should produce 0, the reduction identity
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([]))._data), 0)
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([],
                                                    keepdims=True))._data),
                      [0])
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []]))._data), 0)
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []],
                                                    keepdims=True))._data),
                      [[0]])
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []],
                                                    axis=-1))._data),
                      [0, 0])
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []],
                                                         axis=-1,
                                                         keepdims=True))._data),
                      [[0], [0]])
     # If we're only reducing on a non-empty dimension, we might still
     # end up with zero-sized outputs
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []],
                                                    axis=0))._data),
                      [])
     self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []],
                                                    axis=0,
                                                    keepdims=True))._data),
                      [[]])
 def test_assign_scalar_to_two_d_array(self):
     # Set up our data buffers
     src = data_descriptor_from_ctypes(ctypes.c_float(-50), writable=False)
     dst = data_descriptor_from_ctypes((ctypes.c_double * 3 * 4)(), writable=True)
     # Do the assignment
     execute_unary_single(dst, src, datashape.float64, datashape.float32, self.sqr)
     self.assertEqual(dd_as_py(dst), [[-50.0 * -50] * 3] * 4)
示例#22
0
 def test_uints(self):
     types = ['uint8', 'uint16', 'uint32', 'uint64']
     for type_ in types:
         a = blaze.array(np.arange(3), dshape=type_)
         dtype = to_numpy_dtype(a.dshape)
         self.assertEqual(dtype, np.dtype(type_))
         self.assertEqual(dd_as_py(a._data), [0, 1, 2])
 def test_basic_object_type(self):
     self.assertTrue(issubclass(DyNDDataDescriptor, IDataDescriptor))
     a = nd.array([[1, 2, 3], [4, 5, 6]])
     dd = DyNDDataDescriptor(a)
     # Make sure the right type is returned
     self.assertTrue(isinstance(dd, IDataDescriptor))
     self.assertEqual(dd_as_py(dd), [[1, 2, 3], [4, 5, 6]])
 def test_getitem_start_step(self):
     dd = CSVDataDescriptor(self.csv_file, schema=csv_schema)
     el = dd[1::2]
     self.assertTrue(isinstance(el, DyNDDataDescriptor))
     vals = dd_as_py(el)
     self.assertEqual(vals, [
     {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}])
    def test_element_write(self):
        a = nd.array([1, 2, 3, 4, 5], access='rw')
        dd = DyNDDataDescriptor(a)

        self.assertEqual(dd.dshape, datashape.dshape('5, int32'))
        ge = dd.element_writer(1)
        self.assertTrue(isinstance(ge, IElementWriter))

        x = ctypes.c_int32(123)
        ge.write_single((1,), ctypes.addressof(x))
        self.assertEqual(dd_as_py(dd), [1,123,3,4,5])

        with ge.buffered_ptr((3,)) as dst_ptr:
            x = ctypes.c_int32(456)
            ctypes.memmove(dst_ptr, ctypes.addressof(x), 4)
        self.assertEqual(dd_as_py(dd), [1,123,3,456,5])
 def test_assign_scalar(self):
     # Set up our data buffers
     src = data_descriptor_from_ctypes(ctypes.c_float(1028), writable=False)
     dst = data_descriptor_from_ctypes(ctypes.c_double(-100), writable=True)
     # Do the assignment
     execute_unary_single(dst, src, datashape.float64, datashape.float32, self.sqr)
     self.assertEqual(dd_as_py(dst), 1028.0*1028.0)
示例#27
0
    def function(self):
        A = getattr(self, storage1 + 'A')
        B = getattr(self, storage2 + 'B')

        Rd = kernel(A, B)
        self.assert_(isinstance(Rd, blaze.Array))
        self.assert_(Rd._data.capabilities.deferred)
        p = _store(storage3 + 'Rd') if storage3 == 'dsk' else None
        try:
            Rc = blaze.eval(Rd, storage=p)
            self.assert_(isinstance(Rc, blaze.Array))
            npy_data = getattr(self, 'npy' + R)
            assert_allclose(np.array(dd_as_py(Rc._data)), npy_data)

            if storage3 == 'dsk':
                self.assert_(Rc._data.capabilities.persistent)
            else:
                self.assert_(not Rc._data.capabilities.persistent)

        finally:
            try:
                if p is not None:
                    blaze.drop(p)
            except:
                pass # show the real error...
示例#28
0
 def test_append2(self):
     persist = blaze.Storage(self.rooturi, format="blz")
     a = blaze.empty('0 * 2 * float64', storage=persist)
     self.assertTrue(isinstance(a, blaze.Array))
     lvals = [[i,i*2] for i in range(10)]
     append(a,lvals)
     self.assertEqual(dd_as_py(a._data), lvals)
 def test_getitem_stop(self):
     dd = CSVDataDescriptor(self.csv_file, schema=csv_schema)
     el = dd[:1]
     self.assertTrue(isinstance(el, DyNDDataDescriptor))
     vals = dd_as_py(el)
     self.assertEqual(vals, [
         {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}])
示例#30
0
 def test_create(self):
     persist = blaze.Storage(self.rooturi, format="blz")
     a = blaze.array([], 'float64', storage=persist)
     self.assertTrue(isinstance(a, blaze.Array))
     print("->", a.dshape.shape)
     self.assertTrue(a.dshape.shape == (0,))
     self.assertEqual(dd_as_py(a._data), [])
示例#31
0
 def test_append(self):
     store = blaze.Storage(self.url, mode='r+')
     a = blaze.open(store, schema=csv_schema)
     blaze.append(a, ["k4", "v4", 4, True])
     self.assertEqual(dd_as_py(a._data), csv_ldict + \
         [{u'f0': u'k4', u'f1': u'v4', u'f2': 4, u'f3': True}])
示例#32
0
 def test_deprecated_open(self):
     url = "csv://" + self.fname
     store = blaze.Storage(url, mode='r')
     a = blaze.open(store, schema=csv_schema)
     self.assert_(isinstance(a, blaze.Array))
     self.assertEqual(dd_as_py(a._data), csv_ldict)
示例#33
0
 def test_open(self):
     store = blaze.Storage(self.url, mode='r')
     a = blaze.open(store, schema=json_schema)
     self.assert_(isinstance(a, blaze.Array))
     self.assertEqual(dd_as_py(a._data), [1, 2, 3, 4, 5])
示例#34
0
 def test_2d(self):
     a = blaze.array(np.arange(3 * 3).reshape(3, 3), caps=self.caps)
     a[1] = 2
     self.assertEqual(dd_as_py(a[1]._data), [2, 2, 2])
示例#35
0
 def test_scalar(self):
     a = blaze.array(np.arange(3), caps=self.caps)
     a[0] = 1
     self.assertEqual(dd_as_py(a[0]._data), 1)
示例#36
0
 def test_compute(self):
     ra = blaze.array(RemoteDataDescriptor('%s/py_arr' % self.baseurl))
     result = ra + 1
     result = blaze.eval(result)
     self.assertEqual(result.dshape, datashape.dshape('5, int32'))
     self.assertEqual(dd_as_py(result._data), [2, 3, 4, 5, 6])
示例#37
0
 def test_1d(self):
     a = blaze.array(np.arange(3), caps=self.caps)
     # print("a:", a, self.caps)
     self.assertEqual(dd_as_py(a[0:2]._data), [0, 1])
示例#38
0
 def test_open_has_header(self):
     store = blaze.Storage(self.url, mode='r')
     a = blaze.open(store, schema=csv_schema, has_header=False)
     self.assert_(isinstance(a, blaze.Array))
     self.assertEqual(dd_as_py(a._data), csv_ldict)
示例#39
0
 def test_bitwise_not_uint64(self):
     x = 0x3192573469a2b3a1
     a = blaze.array(x, 'uint64')
     self.assertEqual(dd_as_py((~a)._data), x ^ 0xffffffffffffffff)
     self.assertEqual(dd_as_py(blaze.bitwise_not(a)._data),
                      x ^ 0xffffffffffffffff)
示例#40
0
 def test_open_dialect(self):
     store = blaze.Storage(self.url, mode='r')
     a = blaze.open(store, schema=csv_schema, dialect='excel')
     self.assert_(isinstance(a, blaze.Array))
     self.assertEqual(dd_as_py(a._data), csv_ldict)
示例#41
0
 def test_bitwise_xor_uint64(self):
     x, y = 0x3192573469a2b3a1, 0x9274a2e219c27638
     a = blaze.array(x, 'uint64')
     b = blaze.array(y, 'uint64')
     self.assertEqual(dd_as_py((a ^ b)._data), x ^ y)
     self.assertEqual(dd_as_py(blaze.bitwise_xor(a, b)._data), x ^ y)
示例#42
0
'''Sample module showing how to read JSON files into blaze arrays'''

from __future__ import absolute_import, division, print_function

import blaze
from blaze.datadescriptor import dd_as_py

json_buf = u"[1, 2, 3, 4, 5]"
json_schema = "var, int8"

# Create a temporary JSON file in URI and open the dataset
dname = '/tmp/test.json'
store = blaze.Storage(dname)
print "store:", store
with file(store.path, "wb") as f:
    f.write(json_buf)
arr = blaze.open(store, json_schema)

#print('Blaze array:', arr)  # XXX This does not work yet
#print('Blaze array:', nd.array(arr))  # XXX idem
# Convert the data to a native Python object
print('Blaze array:', dd_as_py(arr._data))

# Remove the temporary JSON file
blaze.drop(store)
示例#43
0
 def test_get_arr(self):
     ra = blaze.array(RemoteDataDescriptor('%s/csv_arr' % self.baseurl))
     la = blaze.catalog.get('/csv_arr')
     self.assertEqual(la.dshape, ra.dshape)
     self.assertEqual(dd_as_py(la._data), dd_as_py(blaze.eval(ra)._data))
示例#44
0
 def test_bitwise_not_bool(self):
     t = blaze.array(True)
     f = blaze.array(False)
     self.assertEqual(dd_as_py((~t)._data), False)
     self.assertEqual(dd_as_py((~f)._data), True)
示例#45
0
 def test_deprecated_open(self):
     url = "json://" + self.fname
     store = blaze.Storage(url, mode='r')
     a = blaze.open(store, schema=json_schema)
     self.assert_(isinstance(a, blaze.Array))
     self.assertEqual(dd_as_py(a._data), [1, 2, 3, 4, 5])
示例#46
0
 def test_basic_object_type(self):
     self.assertTrue(issubclass(HDF5DataDescriptor, IDataDescriptor))
     dd = HDF5DataDescriptor(self.hdf5_file, '/a1')
     # Make sure the right type is returned
     self.assertTrue(isinstance(dd, IDataDescriptor))
     self.assertEqual(dd_as_py(dd), [[1, 2, 3], [4, 5, 6]])
示例#47
0
 def test_1d(self):
     a = blaze.array(np.arange(3), caps=self.caps)
     a[0:2] = 2
     self.assertEqual(dd_as_py(a[0:2]._data), [2, 2])