示例#1
0
 def __init__(self, blaze_weight, anchors, scale: float = 1.0):
     super().__init__()
     face_detector = BlazeFace().to(device)
     face_detector.load_weights(blaze_weight)
     face_detector.load_anchors(anchors)
     _ = face_detector.train(False)
     self.extractor = FaceExtractor(face_detector, margin=scale - 1)
示例#2
0
def process_video(video_path, filename, image_path, original):
    gpu = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    facedet = BlazeFace().to(gpu)
    facedet.load_weights("blazeface.pth")
    facedet.load_anchors("anchors.npy")
    _ = facedet.train(False)

    from helpers_read_video_1 import VideoReader
    from helpers_face_extract_1 import FaceExtractor

    frames_per_video = 10

    video_reader = VideoReader()
    video_read_fn = lambda x: video_reader.read_random_frames(
        x, num_frames=frames_per_video)
    face_extractor = FaceExtractor(video_read_fn, facedet)

    faces = face_extractor.process_video(video_path)
    # Only look at one face per frame.
    face_extractor.keep_only_best_face(faces)
    n = 0
    for frame_data in faces:
        for face in frame_data["faces"]:
            face_locations = face_recognition.face_locations(face)
            for face_location in face_locations:

                top, right, bottom, left = face_location
                face_image = face[top:bottom, left:right]
                resized_face = cv2.resize(face_image, (224, 224),
                                          interpolation=cv2.INTER_AREA)
                resized_face = cv2.cvtColor(resized_face, cv2.COLOR_RGB2BGR)

                cv2.imwrite(
                    image_path + "/" + filename[:-4] + original + "_" +
                    str(n) + ".jpg", resized_face,
                    [int(cv2.IMWRITE_JPEG_QUALITY), 85])

                n += 1
示例#3
0
    def _load_face_extractor(self):
        """
            Init and Return the face extractor object (implemented in deepfakes-inference-demo/helpers/face_extract_1) 
            that consists of a video reader function and a facedetector 
        """
        import sys

        sys.path.insert(0, os.path.join(self.root_path, "blazeface-pytorch"))
        sys.path.insert(
            0, os.path.join(self.root_path, "deepfakes-inference-demo"))

        #Load the face detection model BlazeFace, based on https://github.com/tkat0/PyTorch_BlazeFace/
        from blazeface import BlazeFace
        facedet = BlazeFace().to(self.gpu)
        #Load the pretrained weights
        facedet.load_weights(
            os.path.join(self.root_path, "blazeface-pytorch/blazeface.pth"))
        facedet.load_anchors(
            os.path.join(self.root_path, "blazeface-pytorch/anchors.npy"))
        #Set the module in evaluation mode
        _ = facedet.train(False)

        from helpers.read_video_1 import VideoReader
        from helpers.face_extract_1 import FaceExtractor

        #set number of frames to be read from the video, taken regulary from the beggining to the end of the video
        self.frames_per_video = 17
        #init video reader
        video_reader = VideoReader()
        #create a lambda function to read the frames where x is the video path
        video_read_fn = lambda x: video_reader.read_frames(
            x, num_frames=self.frames_per_video)
        #init the face extractor with the video reader function and the facedetector
        face_extractor = FaceExtractor(video_read_fn, facedet)

        return face_extractor
示例#4
0
sys.path.insert(1, 'helpers')
sys.path.insert(1, 'model')
sys.path.insert(1, 'weight')

from cvit import CViT
from helpers_read_video_1 import VideoReader
from helpers_face_extract_1 import FaceExtractor

device = 'cuda' if torch.cuda.is_available() else 'cpu'

from blazeface import BlazeFace
facedet = BlazeFace().to(device)
facedet.load_weights("helpers/blazeface.pth")
facedet.load_anchors("helpers/anchors.npy")
_ = facedet.train(False)

mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]

normalize_transform = transforms.Compose([transforms.Normalize(mean, std)])

tresh = 50
sample = 'sample__prediction_data/'

ran = random.randint(0, 400)
ran_min = abs(ran - 1)

filenames = sorted([x for x in os.listdir(sample) if x[-4:] == ".mp4"
                    ])  #[ran_min, ran] -  select video randomly
mtcnn = MTCNN(select_largest=False,