def SkeletonizeSequentially(meta_filename): # read in the data for this block data = ReadMetaData(meta_filename) # users must provide an output directory assert (not data.SkeletonOutputDirectory() == None) os.makedirs(data.SkeletonOutputDirectory(), exist_ok=True) # compute the first step to save the walls of each file for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): SaveAnchorWalls(data, iz, iy, ix) # compute the second step to find the anchors between blocks for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): ComputeAnchorPoints(data, iz, iy, ix) # compute the third step to thin each block independently for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): TopologicalThinning(data, iz, iy, ix) # compute the fourth step to refine the skeleton for label in range(1, data.NLabels()): RefineSkeleton(data, label)
def CalculateBlockStatisticsSequentially(meta_filename): data = ReadMetaData(meta_filename) # iterate over all blocks for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): CalculatePerBlockStatistics(data, iz, iy, ix) CombineStatistics(data)
def CollectSurfacesSequentially(meta_filename): # read in the data for this block data = ReadMetaData(meta_filename) assert (not data.SurfacesDirectory() == None) # compute the first step to save the walls of each file for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): GenerateSurfacesPerBlock(data, iz, iy, ix) CombineSurfaceVoxels(data)
def CalculateSomataStatistics(meta_filename): data = ReadMetaData(meta_filename) somata_statistics = {} # iterate over all blocks for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): print('{} {:04d}z-{:04d}y-{:04d}x'.format( meta_filename, iz, iy, ix)) # some datasets have no somata (default value) upsampled_non_zero_voxels = 0 if data.SomataDownsampleRate(): somata = data.ReadSomataBlock(iz, iy, ix) # get the number of non zero voxels non_zero_voxels = np.count_nonzero(somata) # the upsample factor is the number of voxels at full resolution correspond # to one voxel at the downsampled resolution upsample_factor = data.SomataDownsampleRate()**3 # the number of voxels masked as full resolution upsampled_non_zero_voxels = upsample_factor * non_zero_voxels somata_statistics[(iz, iy, ix)] = upsampled_non_zero_voxels statistics_directory = '{}/statistics'.format(data.TempDirectory()) if not os.path.exists(statistics_directory): os.makedirs(statistics_directory, exist_ok=True) statistics_filename = '{}/somata-statistics.pickle'.format( statistics_directory) PickleData(somata_statistics, statistics_filename)
def EvaluateNeuralReconstructionIntegrity(meta_filename): data = ReadMetaData(meta_filename) synapses_per_label = {} # read in all of the synapses from all of the blocks synapse_directory = data.SynapseDirectory() for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): synapses_filename = '{}/{:04d}z-{:04d}y-{:04d}x.pts'.format(synapse_directory, iz, iy, ix) # ignore the local coordinates block_synapses, _ = ReadPtsFile(data, synapses_filename) # add all synapses for each label in this block to the global synapses for label in block_synapses.keys(): if not label in synapses_per_label: synapses_per_label[label] = [] synapses_per_label[label] += block_synapses[label] # get the output filename evaluation_directory = data.EvaluationDirectory() if not os.path.exists(evaluation_directory): os.makedirs(evaluation_directory, exist_ok=True) output_filename = '{}/nri-results.txt'.format(evaluation_directory) fd = open(output_filename, 'w') # keep track of global statistics total_true_positives = 0 total_false_positives = 0 total_false_negatives = 0 # for each label, find if synapses correspond to endpoints for label in range(1, data.NLabels()): # read the refined skeleton for this synapse skeleton_directory = '{}/skeletons'.format(data.SkeletonOutputDirectory()) skeleton_filename = '{}/{:016d}.pts'.format(skeleton_directory, label) # skip over labels not processed if not os.path.exists(skeleton_filename): continue # get the synapses only for this one label synapses = synapses_per_label[label] # ignore the local coordinates skeletons, _ = ReadPtsFile(data, skeleton_filename) skeleton = skeletons[label] # read in the somata surfaces (points on the surface should not count as endpoints) somata_directory = '{}/somata_surfaces'.format(data.TempDirectory()) somata_filename = '{}/{:016d}.pts'.format(somata_directory, label) # path may not exist if soma not found if os.path.exists(somata_filename): somata_surfaces, _ = ReadPtsFile(data, somata_filename) somata_surface = set(somata_surfaces[label]) else: somata_surface = set() # get the endpoints in this skeleton for this label endpoints = FindEndpoints(data, skeleton, somata_surface) true_positives, false_positives, false_negatives = CalculateNeuralReconstructionIntegrityScore(data, synapses, endpoints) # if there are no true positives the NRI score is 0 if true_positives == 0: nri_score = 0 else: precision = true_positives / float(true_positives + false_positives) recall = true_positives / float(true_positives + false_negatives) nri_score = 2 * (precision * recall) / (precision + recall) print ('Label: {}'.format(label)) print (' True Positives: {:10d}'.format(true_positives)) print (' False Positives: {:10d}'.format(false_positives)) print (' False Negatives: {:10d}'.format(false_negatives)) print (' NRI Score: {:0.4f}'.format(nri_score)) fd.write ('Label: {}\n'.format(label)) fd.write (' True Positives: {:10d}\n'.format(true_positives)) fd.write (' False Positives: {:10d}\n'.format(false_positives)) fd.write (' False Negatives: {:10d}\n'.format(false_negatives)) fd.write (' NRI Score: {:0.4f}\n'.format(nri_score)) # update the global stats total_true_positives += true_positives total_false_positives += false_positives total_false_negatives += false_negatives precision = total_true_positives / float(total_true_positives + total_false_positives) recall = total_true_positives / float(total_true_positives + total_false_negatives) nri_score = 2 * (precision * recall) / (precision + recall) print ('Total Volume'.format(label)) print (' True Positives: {:10d}'.format(total_true_positives)) print (' False Positives: {:10d}'.format(total_false_positives)) print (' False Negatives: {:10d}'.format(total_false_negatives)) print (' NRI Score: {:0.4f}'.format(nri_score)) fd.write ('Total Volume\n'.format(label)) fd.write (' True Positives: {:10d}\n'.format(total_true_positives)) fd.write (' False Positives: {:10d}\n'.format(total_false_positives)) fd.write (' False Negatives: {:10d}\n'.format(total_false_negatives)) fd.write (' NRI Score: {:0.4f}\n'.format(nri_score))
def EvaluateHoleFilling(meta_filename): data = ReadMetaData(meta_filename) # make sure a results folder is specified assert (not data.EvaluationDirectory() == None) hole_sizes = {} neighbor_label_dicts = {} # read in the hole sizes from each block for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): tmp_block_directory = data.TempBlockDirectory(iz, iy, ix) # read the saved hole sizes for this block hole_sizes_filename = '{}/hole-sizes.pickle'.format(tmp_block_directory) holes_sizes_per_block = ReadPickledData(hole_sizes_filename) for label in holes_sizes_per_block: hole_sizes[label] = holes_sizes_per_block[label] # any value already determined in the local step mush have no neighbors associated_label_dict = ReadPickledData('{}/associated-label-set-local.pickle'.format(tmp_block_directory)) for label in associated_label_dict: neighbor_label_dicts[label] = [] # read in the neighbor label dictionary that maps values to its neighbors tmp_directory = data.TempDirectory() neighbor_label_filename = '{}/hole-filling-neighbor-label-dict-global.pickle'.format(tmp_directory) neighbor_label_dict_global = ReadPickledData(neighbor_label_filename) associated_label_filename = '{}/hole-filling-associated-labels.pickle'.format(tmp_directory) associated_label_dict = ReadPickledData(associated_label_filename) # make sure that the keys are identical for hole sizes and associated labels (sanity check) assert (sorted(hole_sizes.keys()) == sorted(associated_label_dict.keys())) # make sure no query component in the global dictionary occurs in the local dictionary for label in neighbor_label_dict_global.keys(): assert (not label in neighbor_label_dicts) # create a unified neighbor labels dictionary that combines local and global information neighbor_label_dicts.update(neighbor_label_dict_global) # make sure that the keys are identical for hole sizes and the neighbor label dicts assert (sorted(hole_sizes.keys()) == sorted(neighbor_label_dicts.keys())) # union find data structure to link together holes across blocks class UnionFindElement: def __init__(self, label): self.label = label self.parent = self self.rank = 0 def Find(element): if not element.parent == element: element.parent = Find(element.parent) return element.parent def Union(element_one, element_two): root_one = Find(element_one) root_two = Find(element_two) if root_one == root_two: return if root_one.rank < root_two.rank: root_one.parent = root_two elif root_one.rank > root_two.rank: root_two.parent = root_one else: root_two.parent = root_one root_one.rank = root_one.rank + 1 union_find_elements = {} for label in neighbor_label_dicts.keys(): # skip over elements that remain background if not associated_label_dict[label]: continue union_find_elements[label] = UnionFindElement(label) for label in neighbor_label_dicts.keys(): # skip over elements that remain background if not associated_label_dict[label]: continue for neighbor_label in neighbor_label_dicts[label]: # skip over the actual neuron label if neighbor_label > 0: continue # merge these two labels together Union(union_find_elements[label], union_find_elements[neighbor_label]) root_holes_sizes = {} # go through all labels in the union find data structure and update the hole size for the parent for label in union_find_elements.keys(): root_label = Find(union_find_elements[label]) # create this hole if it does not already exist if not root_label.label in root_holes_sizes: root_holes_sizes[root_label.label] = 0 root_holes_sizes[root_label.label] += hole_sizes[label] # read in the statistics data to find total volume size statistics_directory = '{}/statistics'.format(data.TempDirectory()) statistics_filename = '{}/combined-statistics.pickle'.format(statistics_directory) volume_statistics = ReadPickledData(statistics_filename) total_volume = volume_statistics['neuronal_volume'] holes = [] small_holes = 0 for root_label in root_holes_sizes.keys(): if root_holes_sizes[root_label] < 5: small_holes += 1 holes.append(root_holes_sizes[root_label]) # get statistics on the number of holes nholes = len(holes) total_hole_volume = sum(holes) print ('Percent Small: {}'.format(100.0 * small_holes / nholes)) print ('No. Holes: {}'.format(nholes)) print ('Total Volume: {} ({:0.2f}%)'.format(total_hole_volume, 100.0 * total_hole_volume / total_volume))
def MapSynapsesAndSurfaces(input_meta_filename, output_meta_filename): # read in the meta data files input_data = ReadMetaData(input_meta_filename) output_data = ReadMetaData(output_meta_filename) input_synapse_directory = input_data.SynapseDirectory() output_synapse_directory = output_data.SynapseDirectory() # create the output synapse directory if it does not exist if not os.path.exists(output_synapse_directory): os.makedirs(output_synapse_directory, exist_ok=True) # read in all of the input syanpses input_synapses = {} for iz in range(input_data.StartZ(), input_data.EndZ()): for iy in range(input_data.StartY(), input_data.EndY()): for ix in range(input_data.StartX(), input_data.EndX()): input_synapse_filename = '{}/{:04d}z-{:04d}y-{:04d}x.pts'.format(input_synapse_directory, iz, iy, ix) # ignore the local points global_pts, _ = ReadPtsFile(input_data, input_synapse_filename) for label in global_pts: if not label in input_synapses: input_synapses[label] = [] # add the array from this block to the input synapses input_synapses[label] += global_pts[label] # create an output dictionary of synapses per block output_synapses_per_block = {} # iterate over all output blocks for iz in range(output_data.StartZ(), output_data.EndZ()): for iy in range(output_data.StartY(), output_data.EndY()): for ix in range(output_data.StartX(), output_data.EndX()): # create empty synapses_per_block dictionaries whose keys will be labels output_synapses_per_block[(iz, iy, ix)] = {} # for every label, go through the discovered synapses from the input data for label in input_synapses.keys(): input_synapses_per_label = input_synapses[label] for input_global_index in input_synapses_per_label: # the global iz, iy, ix coordinates remain the same across blocks global_iz, global_iy, global_ix = input_data.GlobalIndexToIndices(input_global_index) # get the new block from the global coordinates output_block_iz = global_iz // output_data.BlockZLength() output_block_iy = global_iy // output_data.BlockYLength() output_block_ix = global_ix // output_data.BlockXLength() if not label in output_synapses_per_block[(output_block_iz, output_block_iy, output_block_ix)]: output_synapses_per_block[(output_block_iz, output_block_iy, output_block_ix)][label] = [] # get the new global index output_global_index = output_data.GlobalIndicesToIndex(global_iz, global_iy, global_ix) output_synapses_per_block[(output_block_iz, output_block_iy, output_block_ix)][label].append(output_global_index) # write all of the synapse block files output_synapses_directory = output_data.SynapseDirectory() for iz in range(output_data.StartZ(), output_data.EndZ()): for iy in range(output_data.StartY(), output_data.EndY()): for ix in range(output_data.StartX(), output_data.EndX()): output_synapse_filename = '{}/{:04d}z-{:04d}y-{:04d}x.pts'.format(output_synapse_directory, iz, iy, ix) # write the pts file (use global indices) WritePtsFile(output_data, output_synapse_filename, output_synapses_per_block[(iz, iy, ix)], input_local_indices = False) # get the input/output directories for the surfaces input_surfaces_directory = input_data.SurfacesDirectory() output_surfaces_directory = output_data.SurfacesDirectory() # create the output synapse directory if it does not exist if not os.path.exists(output_surfaces_directory): os.makedirs(output_surfaces_directory, exist_ok=True) # iterate over all labels for label in range(1, input_data.NLabels()): start_time = time.time() # skip over labels that do not exist input_surface_filename = '{}/{:016d}.pts'.format(input_surfaces_directory, label) if not os.path.exists(input_surface_filename): continue # read in the input global points input_global_points, _ = ReadPtsFile(input_data, input_surface_filename) # create an empty dictionary for the output points output_global_points = {} output_global_points[label] = [] for input_global_index in input_global_points[label]: # the global iz, iy, ix coordinates remain the same across blocks global_iz, global_iy, global_ix = input_data.GlobalIndexToIndices(input_global_index) # get the new global index output_global_index = output_data.GlobalIndicesToIndex(global_iz, global_iy, global_ix) output_global_points[label].append(output_global_index) # write the new surface filename output_surface_filename = '{}/{:016d}.pts'.format(output_surfaces_directory, label) WritePtsFile(output_data, output_surface_filename, output_global_points, input_local_indices = False) print ('Completed label {} in {:0.2f} seconds'.format(label, time.time() - start_time))
import sys from blockbased_synapseaware.utilities.constants import * from blockbased_synapseaware.utilities.dataIO import ReadMetaData from blockbased_synapseaware.makeflow_example.makeflow_helperfunctions import * from blockbased_synapseaware.hole_filling.mapping import RemoveHoles # read passed arguments meta_fp, iz, iy = ReadArguments_Short(sys.argv) # read in the data for this block data = ReadMetaData(meta_fp) # iterate over x blocks, preventing very short jobs on the cluster for ix in range(data.StartX(), data.EndX()): # Redirect stdout and stderr RedirectOutStreams(data, "HF", 4, iz, iy, ix) # check that beforehand step has executed successfully CheckSuccessFile(data, "HF", 3, "all", "all", "all") # users must provide an output directory assert (not data.HoleFillingOutputDirectory() == None) os.makedirs(data.HoleFillingOutputDirectory(), exist_ok=True) RemoveHoles(data, iz, iy, ix) # Create and Write Success File WriteSuccessFile(data, "HF", 4, iz, iy, ix)
def ConvertSynapsesAndProject(meta_filename, input_synapse_directory, xyz, conversion_rate): data = ReadMetaData(meta_filename) resolution = data.Resolution() # create an empty set of synapses synapses = {} # iterate over all labels for label in range(1, data.NLabels()): # read the surfaces for this label surface_filename = '{}/{:016d}.pts'.format(data.SurfacesDirectory(), label) # some surfaces (i.e., labels) will not exist in the volume if not os.path.exists(surface_filename): continue # read in the surface points, ignore the local coordinates surfaces, _ = ReadPtsFile(data, surface_filename) surface = surfaces[label] npts = len(surface) surface_point_cloud = np.zeros((npts, 3), dtype=np.int32) for index, iv in enumerate(surface): iz, iy, ix = data.GlobalIndexToIndices(iv) surface_point_cloud[index, :] = (iz * resolution[OR_Z], iy * resolution[OR_Y], ix * resolution[OR_X]) # create an empty array for the synapses synapses[label] = [] projected = 0 missed = 0 # read in the original synapses input_synapse_filename = '{}/syn_{:04}.txt'.format( input_synapse_directory, label) if os.path.exists(input_synapse_filename): with open(input_synapse_filename, 'r') as fd: for line in fd: # separate the line into coordinates coordinates = line.strip().split() if xyz: ix = round(int(coordinates[0]) / conversion_rate[OR_X]) iy = round(int(coordinates[1]) / conversion_rate[OR_Y]) iz = round(int(coordinates[2]) / conversion_rate[OR_Z]) else: iz = round(int(coordinates[0]) / conversion_rate[OR_Z]) iy = round(int(coordinates[1]) / conversion_rate[OR_Y]) ix = round(int(coordinates[2]) / conversion_rate[OR_X]) # create a 2D vector for this point vec = np.zeros((1, 3), dtype=np.int32) vec[0, :] = (iz * resolution[OR_Z], iy * resolution[OR_Y], ix * resolution[OR_X]) closest_point = surface[scipy.spatial.distance.cdist( surface_point_cloud, vec).argmin()] closest_iz, closest_iy, closest_ix = data.GlobalIndexToIndices( closest_point) deltaz = resolution[OR_Z] * (iz - closest_iz) deltay = resolution[OR_Y] * (iy - closest_iy) deltax = resolution[OR_X] * (ix - closest_ix) distance = math.sqrt(deltaz * deltaz + deltay * deltay + deltax * deltax) # skip distances that are clearly off (over 200 nanometers) max_deviation = 800 if distance < max_deviation: # add to the list of valid synapses synapses[label].append(closest_point) projected += 1 else: missed += 1 print('Synapses within {} nanometers from surface: {}'.format( max_deviation, projected)) print('Synapses over {} nanometers from surface: {}'.format( max_deviation, missed)) # divide all synapses into blocks synapses_per_block = {} # iterate over all blocks for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): # create empty synapses_per_block dictionaries whose keys will be labels synapses_per_block[(iz, iy, ix)] = {} # for every label, iterate over the discovered synapses for label in synapses.keys(): synapses_per_label = synapses[label] # iterate over all of the projected synapses for global_index in synapses_per_label: global_iz, global_iy, global_ix = data.GlobalIndexToIndices( global_index) block_iz = global_iz // data.BlockZLength() block_iy = global_iy // data.BlockYLength() block_ix = global_ix // data.BlockXLength() # create the array for this label per block if it does not exist if not label in synapses_per_block[(block_iz, block_iy, block_ix)]: synapses_per_block[(block_iz, block_iy, block_ix)][label] = [] synapses_per_block[(block_iz, block_iy, block_ix)][label].append(global_index) # write all of the synapse block files synapse_directory = data.SynapseDirectory() if not os.path.exists(synapse_directory): os.makedirs(synapse_directory, exist_ok=True) for iz in range(data.StartZ(), data.EndZ()): for iy in range(data.StartY(), data.EndY()): for ix in range(data.StartX(), data.EndX()): synapse_filename = '{}/{:04d}z-{:04d}y-{:04d}x.pts'.format( synapse_directory, iz, iy, ix) # write the pts file (use global indices) WritePtsFile(data, synapse_filename, synapses_per_block[(iz, iy, ix)], input_local_indices=False)