def __init__(self): self.eeg_data = BlockInput(name='EEGData', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.EEGDATA) self.pre_stimulus_onset = BlockParameter( name='PreStimulus onset', attribute_type=ParameterType.NUMBER, defaultvalue='-0.2', description='') self.post_stimulus_onset = BlockParameter( name='PostStimulus onset', attribute_type=ParameterType.NUMBER, defaultvalue='0.5', description='') self.baseline_start_time = BlockParameter( name='Baseline Correction Start Time', attribute_type=ParameterType.STRING, defaultvalue='None', description='None means beginning of the data') self.baseline_end_time = BlockParameter( name='Baseline Correction End Time', attribute_type=ParameterType.STRING, defaultvalue='0', description='None means end of the data') self.event_id = BlockParameter(name='Event Id', attribute_type=ParameterType.STRING, defaultvalue='None', description='None means all the events') self.eeg_data_output = BlockOutput(name='Epochs', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.EPOCHS)
def __init__(self): self.model = BlockInput(name='Model', min_cardinality=0, max_cardinality=1, attribute_type=ParameterType.MODEL) self.feature_vector = BlockInput( name='FeatureVector', min_cardinality=0, max_cardinality=1, attribute_type=ParameterType.FEATUREVECTOR) self.optimizer = BlockParameter( name='Optimizer', attribute_type=ParameterType.STRING, defaultvalue='adam', description="Either, 'adam', 'adagrad', 'rmsprop'") self.test_size = BlockParameter( name='Test Size', attribute_type=ParameterType.NUMBER, defaultvalue='0.33', description="Test Train Split. Ratio of test size") self.epochs = BlockParameter(name='Number of Epochs', attribute_type=ParameterType.NUMBER, defaultvalue='100', description="") self.classes = BlockParameter( name='Number of Classes', attribute_type=ParameterType.NUMBER, defaultvalue='', description="Number of Classification classes") self.model_out = BlockOutput(name='Model', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.MODEL)
def __init__(self): self.model = BlockInput(name='Model', min_cardinality=0, max_cardinality=1, attribute_type=ParameterType.MODEL) self.units = BlockParameter(name='Number of Units', attribute_type=ParameterType.NUMBER, defaultvalue='', description='Must be an Integer') self.activation = BlockParameter( name='Activation Function', attribute_type=ParameterType.STRING, defaultvalue='relu', description= "Either, 'sigmoid', 'relu', 'softmax', 'elu', 'leaky-relu', 'selu' or 'gelu'" ) self.dropout = BlockParameter( name='Dropout', attribute_type=ParameterType.STRING, defaultvalue='0', description="Fraction of the input units to drop") self.model_out = BlockOutput(name='Model', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.MODEL)
def __init__(self): self.model = BlockInput(name='Model', min_cardinality=0, max_cardinality=1, attribute_type=ParameterType.MODEL) self.model_out = BlockOutput(name='Model', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.MODEL)
def __init__(self): self.epochs = BlockInput(name='Epochs', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.EPOCHS) self.feature_vector = BlockOutput( name='FeatureVector', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.FEATUREVECTOR)
def __init__(self): self.num1 = BlockInput(name='num1', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.NUMBER) self.num2 = BlockInput(name='num2', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.NUMBER) self.output = BlockOutput(name='output', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.NUMBER)
def __init__(self): self.epochs = BlockInput( name='Epochs', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.EPOCHS ) self.epochs_output = BlockOutput( name='Epochs', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.EPOCHS )
def __init__(self): self.num = BlockParameter( name='constant value', attribute_type=ParameterType.NUMBER, defaultvalue=10 # defaultvalue='' ) self.output = BlockOutput( name='output', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.NUMBER )
def __init__(self): self.eeg_data = BlockParameter( name='EEG File', attribute_type=ParameterType.FILE, defaultvalue='', description='Select only the ".eeg" file, but folder must contain ".vhdr" and ".vmrk" files' ) self.eeg_data_output = BlockOutput( name='EEGData', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.EEGDATA )
def __init__(self): self.feature_vector = BlockInput(name='FeatureVector', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.EPOCHS) self.labels = BlockParameter( name='Labels', attribute_type=ParameterType.STRING_ARRAY, defaultvalue='', description= 'All comma separated event ids are considered as one class.<br>Event id will not be considered if not added' ) self.feature_vector_out = BlockOutput( name='FeatureVector', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.FEATUREVECTOR)
def __init__(self): self.eeg_data = BlockInput( name='EEGData', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.EEGDATA ) self.channels = BlockParameter( name='Channels', attribute_type=ParameterType.STRING_ARRAY, defaultvalue='', description='Select channel' ) self.eeg_data_output = BlockOutput( name='EEGData', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.EEGDATA )
def __init__(self): self.eeg_data = BlockInput(name='EEGData', min_cardinality=1, max_cardinality=1, attribute_type=ParameterType.EEGDATA) self.low_cutoff_freq = BlockParameter( name='Low Cutoff Frequency', attribute_type=ParameterType.NUMBER, defaultvalue='None', description='If None the data are only low-passed') self.high_cutoff_freq = BlockParameter( name='High Cutoff Frequency', attribute_type=ParameterType.NUMBER, defaultvalue='None', description='If None the data are only high-passed') self.eeg_data_output = BlockOutput( name='EEGData', min_cardinality=1, max_cardinality=100, attribute_type=ParameterType.EEGDATA)