示例#1
0
    def test_002_t(self):
        """Encoder to Decoder - noisy BPSK w/ soft constellation de-mapper"""

        # Parameters
        N = 18444
        K = 6144
        pct_en = False
        n_ite = 6
        M = 2
        snr_db = SNR_DB
        max_len = 10 * K
        flip_llrs = False
        sym_rate = 2 * 156250

        # NOTE: The soft decoder block outputs positive LLR if bit "1" is more
        # likely, and negative LLR otherwise (bit = 0). That is, the soft
        # de-mapper's convention is the oposite of the one adopted in the Turbo
        # Decoder. To compensate that, we choose to flip the LLRs (multiply them
        # by "-1") inside the decoder wrapper.

        # Constants
        noise_v = 1 / math.sqrt((10**(float(snr_db) / 10)))
        rndm = random.Random()

        # Input data
        in_vec = tuple([rndm.randint(0, 1) for i in range(0, max_len)])

        # Flowgraph
        src = blocks.vector_source_b(in_vec)
        enc = blocksattx.turbo_encoder(K, pct_en)
        const = digital.constellation_bpsk().base()
        cmap = digital.chunks_to_symbols_bc(const.points())
        nadder = blocks.add_cc()
        noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_v, 0)
        cdemap = blocksat.soft_decoder_cf(M, noise_v)
        dec = blocksat.turbo_decoder(K, pct_en, n_ite, flip_llrs)
        snk = blocks.vector_sink_b()
        snk_sym = blocks.vector_sink_c()
        snk_llr = blocks.vector_sink_f()
        self.tb.connect(src, enc, cmap)
        self.tb.connect(cmap, (nadder, 0))
        self.tb.connect(noise, (nadder, 1))
        self.tb.connect(nadder, cdemap, dec, snk)
        self.tb.connect(cmap, snk_sym)
        self.tb.connect(cdemap, snk_llr)
        self.tb.run()

        # Collect results
        out_vec = snk.data()
        llrs = snk_llr.data()
        syms = snk_sym.data()
        diff = array(in_vec) - array(out_vec)
        err = [0 if i == 0 else 1 for i in diff]

        self.dump(const.points(), in_vec, syms, llrs, out_vec)
        print('Number of errors: %d' % (sum(err)))

        # Check results
        self.assertEqual(sum(err), 0)
示例#2
0
    def test_003_t(self):
        """Encoder to Decoder - noisy QPSK w/ soft constellation de-mapper"""

        # Parameters
        N = 18444
        K = 6144
        pct_en = False
        n_ite = 6
        M = 4
        snr_db = SNR_DB
        max_len = 10 * K
        flip_llrs = False
        sym_rate = 2 * 156250

        # NOTE: just like in the previous example, flipping of the LLRs is
        # necessary here.

        # Constants
        noise_v = 1 / math.sqrt((10**(float(snr_db) / 10)))
        rndm = random.Random()

        # Input data
        in_vec = tuple([rndm.randint(0, 1) for i in range(0, max_len)])

        # Flowgraph
        src = blocks.vector_source_b(in_vec)
        enc = blocksattx.turbo_encoder(K, pct_en)
        pack = blocks.repack_bits_bb(1, 2, "", False, gr.GR_MSB_FIRST)
        const = digital.constellation_qpsk().base()
        cmap = digital.chunks_to_symbols_bc(const.points())
        nadder = blocks.add_cc()
        noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_v, 0)
        cdemap = blocksat.soft_decoder_cf(M, noise_v)
        dec = blocksat.turbo_decoder(K, pct_en, n_ite, flip_llrs)
        snk = blocks.vector_sink_b()
        snk_sym = blocks.vector_sink_c()
        snk_llr = blocks.vector_sink_f()
        self.tb.connect(src, enc, pack, cmap)
        self.tb.connect(cmap, (nadder, 0))
        self.tb.connect(noise, (nadder, 1))
        self.tb.connect(nadder, cdemap, dec, snk)
        self.tb.connect(cmap, snk_sym)
        self.tb.connect(cdemap, snk_llr)
        self.tb.run()

        # Collect results
        out_vec = snk.data()
        llrs = snk_llr.data()
        syms = snk_sym.data()
        diff = array(in_vec) - array(out_vec)
        err = [0 if i == 0 else 1 for i in diff]

        self.dump(const.points(), in_vec, syms, llrs, out_vec)
        print('Number of errors: %d' % (sum(err)))

        # Check results
        self.assertEqual(sum(err), 0)
    def test_001_t(self):
        """QPSK points in each quadrant"""

        # Parameters
        M = 4
        N0 = 1.0
        symbol = ((-0.5 - 0.5j), (0.5 - 0.5j), (-0.5 + 0.5j), (0.5 + 0.5j))

        # Flowgraph
        src = blocks.vector_source_c(symbol)
        soft_decoder = blocksat.soft_decoder_cf(M, N0)
        snk = blocks.vector_sink_f()
        self.tb.connect(src, soft_decoder, snk)
        self.tb.run()

        # Check data
        llrs = snk.data()
        expected_llrs = (1.4142, 1.4142, 1.4142, -1.4142, -1.4142, 1.4142,
                         -1.4142, -1.4142)
        print(llrs)
        self.assertFloatTuplesAlmostEqual(llrs, expected_llrs, places=4)
    def test_002_t(self):
        """Decoding of noisy QPSK symbols"""

        # Parameters
        M = 4
        N0 = 1.0
        max_len = 50
        snr_db = 20

        # Constants
        rndm = random.Random()
        noise_v = 1 / math.sqrt((10**(float(snr_db) / 10)))
        in_vec = tuple([rndm.randint(0, 1) for i in range(0, max_len)])

        # Flowgraph
        src = blocks.vector_source_b(in_vec)
        pack = blocks.repack_bits_bb(1, 2, "", False, gr.GR_MSB_FIRST)
        const = digital.constellation_qpsk().base()
        cmap = digital.chunks_to_symbols_bc(const.points())
        nadder = blocks.add_cc()
        noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_v, 0)
        soft_decoder = blocksat.soft_decoder_cf(M, N0)
        slicer = digital.binary_slicer_fb()
        inverter = digital.map_bb([1, 0])
        snk = blocks.vector_sink_b()
        snk_llr = blocks.vector_sink_f()
        self.tb.connect(src, pack, cmap)
        self.tb.connect(cmap, (nadder, 0))
        self.tb.connect(noise, (nadder, 1))
        self.tb.connect(nadder, soft_decoder, slicer, inverter, snk)
        self.tb.connect(soft_decoder, snk_llr)
        self.tb.run()
        # check data
        dec_vec = snk.data()
        llrs = snk_llr.data()

        print(llrs)
        print(in_vec)
        print(dec_vec)
        self.assertFloatTuplesAlmostEqual(in_vec, dec_vec, places=4)