def _run_stochastic_block_model(self, write=False, write_property=None, **kwargs): raise CommunityDetector.PartitionError( "Stochastic block model is not implemented " "for Neo4j-based graphs")
def _run_girvan_newman(self, weight=None, n_communitites=2, intermediate=False): raise CommunityDetector.PartitionError( "Girvan-Newman algorithm is not implemented " "for Neo4j-based graphs")
def detect_communities(self, strategy="louvain", weight=None, n_communities=2, intermediate=False, write=False, write_property=None, **kwargs): """Detect community partition using the input strategy.""" if strategy not in CommunityDetector._strategies.keys(): raise CommunityDetector.PartitionError( f"Unknown community detection strategy '{strategy}'") partition = getattr(self, CommunityDetector._strategies[strategy])( weight=weight, n_communities=n_communities, intermediate=intermediate, write=write, write_property=write_property, **kwargs) return partition
def _run_stochastic_block_model(self, **kwargs): raise CommunityDetector.PartitionError( "Stochastic block model is not implemented " "for NetworkX-based graphs")
def _run_label_propagation(self, **kwargs): raise CommunityDetector.PartitionError( "Label propagation algorithm is not implemented " "for Neo4j-based graphs")
def _run_louvain(self, **kwargs): raise CommunityDetector.PartitionError( "Louvain algorithm is not implemented " "for graph-tool-based graphs")