示例#1
0
        },
    ]),
    'weight_decay_rate':
    0.0001,
}

NETWORK = SmartDict()
NETWORK.OPTIMIZER_CLASS = None
NETWORK.OPTIMIZER_KWARGS = {}
NETWORK.LEARNING_RATE_FUNC = None
NETWORK.LEARNING_RATE_KWARGS = {}
NETWORK.WEIGHT_DECAY_RATE = None
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2}
NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

# dataset
DATASET = SmartDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    Pad(2),
    Crop(size=IMAGE_SIZE),
    FlipLeftRight(),
])
示例#2
0
NETWORK.CLASS_SCALE = 1.0
NETWORK.COORDINATE_SCALE = 1.0
NETWORK.LOSS_IOU_THRESHOLD = 0.6
NETWORK.WEIGHT_DECAY_RATE = 0.0005
NETWORK.SCORE_THRESHOLD = score_threshold
NETWORK.NMS_IOU_THRESHOLD = nms_iou_threshold
NETWORK.NMS_MAX_OUTPUT_SIZE = nms_max_output_size
NETWORK.LOSS_WARMUP_STEPS = 1280 // BATCH_SIZE

# quantization
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2.0}
NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}
NETWORK.QUANTIZE_FIRST_CONVOLUTION = True
NETWORK.QUANTIZE_LAST_CONVOLUTION = False

# dataset
DATASET = SmartDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    FlipLeftRight(),
    Brightness((0.75, 1.25)),
    Color((0.75, 1.25)),
    Contrast((0.75, 1.25)),
    Hue((-10, 10)),
    SSDRandomCrop(min_crop_ratio=0.7),
])
NETWORK.OPTIMIZER_KWARGS = {"learning_rate": 0.001}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.WEIGHT_DECAY_RATE = 0.
NETWORK.AUXILIARY_LOSS_WEIGHT = 0.5
NETWORK.USE_FEATURE_FUSION = True
NETWORK.USE_ATTENTION_REFINEMENT = True
NETWORK.USE_TAIL_GAP = True
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {
    'bit': 2,
    'max_value': 2
}
NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

DATASET = SmartDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    Resize(size=IMAGE_SIZE),
    Brightness((0.75, 1.25)),
    Color((0.75, 1.25)),
    Contrast((0.75, 1.25)),
    FlipLeftRight(),
    Hue((-10, 10)),
])
DATASET.ENABLE_PREFETCH = True
# for debug
# BATCH_SIZE = 2
# SUMMARISE_STEPS = 1
# IS_DEBUG = True

PRE_PROCESSOR = Sequence([
    Resize(size=IMAGE_SIZE),
    DivideBy255(),
])
POST_PROCESSOR = None

NETWORK = SmartDict()
NETWORK.OPTIMIZER_CLASS = tf.compat.v1.train.AdamOptimizer
NETWORK.OPTIMIZER_KWARGS = {"learning_rate": 0.001}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2}
NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

DATASET = SmartDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    FlipLeftRight(),
])
DATASET.ENABLE_PREFETCH = True
示例#5
0
# for debug
# BATCH_SIZE = 2
# SUMMARISE_STEPS = 1
# IS_DEBUG = True

PRE_PROCESSOR = Sequence([
    PerImageStandardization(),
])
POST_PROCESSOR = None

NETWORK = SmartDict()
NETWORK.OPTIMIZER_CLASS = tf.compat.v1.train.AdamOptimizer
NETWORK.OPTIMIZER_KWARGS = {"learning_rate": 0.001}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT

DATASET = SmartDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR

DATASET.AUGMENTOR = Sequence([
    Brightness((0.75, 1.25)),
    Color((0.75, 1.25)),
    Contrast((0.75, 1.25)),
    FlipLeftRight(),
    Hue((-10, 10)),
])
DATASET.ENABLE_PREFETCH = True
    Resize(size=IMAGE_SIZE),
    {% if quantize_first_convolution %}DivideBy255(){% else %}PerImageStandardization(){% endif %}
])
POST_PROCESSOR = None

NETWORK = SmartDict()
NETWORK.OPTIMIZER_CLASS = {{optimizer_class}}
NETWORK.OPTIMIZER_KWARGS = {{optimizer_kwargs}}
NETWORK.LEARNING_RATE_FUNC = {{learning_rate_func}}
NETWORK.LEARNING_RATE_KWARGS = {{learning_rate_kwargs}}

NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {
    'bit': 2,
    'max_value': 2
}
NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

DATASET = SmartDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([{% if data_augmentation %}{% for aug_name, aug_val in data_augmentation.items() %}
    {{ aug_name }}({% for param_name, param_value in aug_val %}{{ param_name }}={{ param_value }}, {% endfor %}),{% endfor %}
{% endif %}])
DATASET.ENABLE_PREFETCH = {{ dataset_prefetch }}
示例#7
0
NETWORK.OPTIMIZER_CLASS = tf.compat.v1.train.AdamOptimizer
NETWORK.OPTIMIZER_KWARGS = {}
NETWORK.LEARNING_RATE_FUNC = tf.compat.v1.train.piecewise_constant
NETWORK.LEARNING_RATE_KWARGS = {
        "values": [1e-4, 1e-3, 1e-4, 1e-5],
        "boundaries": [5000, step_per_epoch * 5, step_per_epoch * 10],
}
NETWORK.STRIDE = STRIDE
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {
    'bit': 2,
    'max_value': 2
}
NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

DATASET = SmartDict()
DATASET.IMAGE_SIZE = IMAGE_SIZE
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    Brightness((0.75, 1.25)),
    Color((0.75, 1.25)),
    Contrast((0.75, 1.25))
])
DATASET.ENABLE_PREFETCH = True