示例#1
0
    def reset(self):
        """
        Reset the environment to initial state
        recdata is a dict that contains requested simulation data from Bluesky. Can be changed in plugin MLCONTROL.
        """
        global recdataflag
        self.ep = 0
        if not self.connected:
            self.NodeID = 0
            self.myclient = Client()
            self.myclient.connect(event_port=52000, stream_port=52001)
            self.myclient.receive(1000)
            self.myclient.event_received.connect(on_event)
            self.myclient.actnode(self.myclient.servers[self.myclient.host_id]
                                  ['nodes'][self.NodeID])
            self.connected = True

        #Initialize env.
        str_to_send = 'IC ' + self.scenfile + '; MLSTEP'
        recdataflag = False
        self.myclient.send_event(b'STACKCMD', str_to_send)

        while not recdataflag:
            self.myclient.receive(1000)

        dist_wpt = tools.geo.kwikdist(recdata['lat'][0], recdata['lon'][0],
                                      recdata['actwplat'][0],
                                      recdata['actwplon'][0])
        self.state = np.array([
            recdata['lat'][0], recdata['lon'][0],
            normalizer(recdata['hdg'][0], 'HDGToNorm', self.min_hdg,
                       self.max_hdg),
            normalizer(dist_wpt, 'DistToNorm', self.min_dist_waypoint,
                       self.max_dist_waypoint)
        ])
        # Reset data flag when data has been processed.
        recdataflag = False
        return self.state
示例#2
0
from bluesky.network.client import Client
from bluesky.network.server import Server
myclient = Client()

myclient.connect(event_port=11000, stream_port=11001)

myclient.subscribe(b'ACDATA')


def on_event(eventname, eventdata, sender_id):
    print('Event received:', eventname)
    print(eventdata)
    print(sender_id)


def on_stream(streamname, data, sender_id):
    print('Stream data received:', streamname)
    print(data['lat'])
    flag = True
    return flag


flag = False
myclient.event_received.connect(on_event)
flag = myclient.stream_received.connect(on_stream)

myclient.receive()

# print(myclient.servers[myclient.host_id]['nodes'][0])
# diffnode = myclient.servers[myclient.host_id]['nodes'][1]
# myclient.actnode(diffnode)
示例#3
0
class BlueSkyEnv(gym.Env):

    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 50
    }

    def __init__(self, **kwargs):
        """
        # Initialize client server interface
        # NodeID: is required for each individual environment to connect to its respective simulation node, when
        # running a single simulation this argument is not required.
        # n_cpu: total amount of nodes that have to be initialized.
        # NOTE: N_cpu and len(NodeID) have to be the same
        # scenfile: The specific scenario file this environment is going to run.
        # TODO:
            -Use bs.settings for ports and plugin check.
            -Starting of server integration (Now the server has to separately be started by using bluesky.py --headless
        """
        global recdataflag, recdata
        recdataflag = False
        recdata = None
        self.NodeID = kwargs['NodeID']
        self.n_cpu = kwargs['n_cpu']
        self.cfgfile = ''
        self.scenfile = kwargs['scenfile']
        if self.scenfile is None:
            self.scenfile = './synthetics/super/super3.scn'

        if self.NodeID != 0 and self.n_cpu >= 1:
            # print('Client {0:2d} waiting for node to initialize'.format(self.NodeID))
            time.sleep(5)

        self.myclient = Client()
        self.myclient.connect(event_port=52000, stream_port=52001)
        self.myclient.receive(1000)
        self.myclient.actnode(
            self.myclient.servers[self.myclient.host_id]['nodes'][self.NodeID])
        self.myclient.event_received.connect(on_event)

        if self.NodeID == 0 and self.n_cpu >= 1:
            str_to_send = 'addnodes ' + str(self.n_cpu - 1)
            # print(str_to_send)
            self.myclient.send_event(b'STACKCMD', str_to_send)
            print('Initializing {0:2d} nodes'.format(self.n_cpu))
            time.sleep(5)

        # Set constants for environment
        self.nm = 1852  # Nautical miles [nm] in meter [m]
        self.ep = 0
        self.los = 5 * 1.05  # [nm] Horizontal separation minimum for resolution
        self.wpt_reached = 5  # [nm]
        self.min_hdg = 0  # [deg]
        self.max_hdg = 360  # [deg]
        self.min_lat = -1  # [lat/lon]
        self.max_lat = 1  # [lat/lon]
        self.min_lon = -1  # [lat/lon]
        self.max_lon = 1  # [lat/lon]

        self.min_dist_plane = self.los * 0.95
        self.max_dist_plane = 125
        self.min_dist_waypoint = self.wpt_reached * 0.95
        self.max_dist_waypoint = 125

        # TODO:State definitions and other state information still has to be formalized.
        self.state = None
        self.state_object = None

        # Define observation bounds and normalize so that all values range between -1 and 1 or 0 and 1,
        # normalization improves neural networks ability to converge
        self.low_obs = np.array([
            self.min_lat, self.min_lon,
            normalizer(self.min_hdg, 'HDGToNorm', self.min_hdg, self.max_hdg),
            normalizer(self.min_dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(self.min_dist_waypoint, 'DistToNorm',
                       self.min_dist_waypoint, self.max_dist_waypoint)
        ])
        self.high_obs = np.array([
            self.max_lat, self.max_lon,
            normalizer(self.max_hdg, 'HDGToNorm', self.min_hdg, self.max_hdg),
            normalizer(self.max_dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(self.max_dist_waypoint, 'DistToNorm',
                       self.min_dist_waypoint, self.max_dist_waypoint)
        ])
        self.viewer = None

        # observation is a array of shape (5,) [latitude,longitude,hdg,dist_plane,dist_waypoint]
        self.observation_space = spaces.Box(low=self.low_obs,
                                            high=self.high_obs,
                                            dtype=np.float32)
        # Action space is normalized heading, shape (1,)
        self.action_space = spaces.Box(low=-1,
                                       high=1,
                                       shape=(1, ),
                                       dtype=np.float32)

    def reset(self):
        """
        Reset the environment to initial state
        recdata is a dict that contains requested simulation data from Bluesky. Can be changed in plugin MLCONTROL.
        """
        global recdataflag

        str_to_send = 'IC ' + self.scenfile + '; MLSTEP'
        recdataflag = False
        self.myclient.send_event(b'STACKCMD', str_to_send)

        while not recdataflag:
            self.myclient.receive(1000)

        # Calculate distance to plane and waypoint. This method will change when more research is done into state def.
        dist_plane = tools.geo.kwikdist(recdata['lat'][0], recdata['lon'][0],
                                        recdata['lat'][1], recdata['lon'][1])
        dist_wpt = tools.geo.kwikdist(recdata['lat'][0], recdata['lon'][0],
                                      recdata['actwplat'][0],
                                      recdata['actwplon'][0])

        # Set state to initial state.
        self.state = np.array([
            recdata['lat'][0], recdata['lon'][0],
            normalizer(recdata['hdg'][0], 'HDGToNorm', self.min_hdg,
                       self.max_hdg),
            normalizer(dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(dist_wpt, 'DistToNorm', self.min_dist_waypoint,
                       self.max_dist_waypoint)
        ])

        self.state_object = np.array(
            [recdata['lat'][1], recdata['lon'][1], recdata['hdg'][1]])
        self.ep = 0

        # Reset data flag when data has been processed.
        recdataflag = False
        return self.state

    def step(self, action):
        """
        This function interacts with the Bluesky simulation node/server, and gives a action command to the environment
        and returns state(t + step)
        Reward accumulation is done outside this step function, so this function returns the reward gained during
        this simulation step.
        """
        # Initialize step parameters
        global recdataflag
        reward = 0
        self.ep = self.ep + 1
        done = False

        # Forward action and let bluesky run a simulation step.
        # Normalize action to be between 0 and 1

        action_tot = normalizer(action[0], 'NormToHDG', self.min_hdg,
                                self.max_hdg)
        self.myclient.send_event(
            b'STACKCMD',
            'HDG SUP0 ' + np.array2string(action_tot) + '; MLSTEP')

        # Wait for server to respond
        while not recdataflag:
            self.myclient.receive(1000)

        # Do some intermediate state update calculations.
        dist_plane = tools.geo.kwikdist(recdata['lat'][0], recdata['lon'][0],
                                        recdata['lat'][1], recdata['lon'][1])
        dist_wpt = tools.geo.kwikdist(recdata['lat'][0], recdata['lon'][0],
                                      recdata['actwplat'][0],
                                      recdata['actwplon'][0])

        # Assign rewards if goals states are met or any other arbitary rewards.
        if dist_plane <= self.los:
            reward = reward - 100
            done = True

        if dist_wpt <= self.wpt_reached:
            reward = reward + 100
            done = True

        if self.ep >= 500:
            done = True

        reward = reward + 3 / dist_wpt

        # Update state to state(t + step)
        self.state = np.array([
            recdata['lat'][0], recdata['lon'][0],
            normalizer(recdata['hdg'][0], 'HDGToNorm', self.min_hdg,
                       self.max_hdg),
            normalizer(dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(dist_wpt, 'DistToNorm', self.min_dist_waypoint,
                       self.max_dist_waypoint)
        ])

        self.state_object = np.array(
            [recdata['lat'][1], recdata['lon'][1], recdata['hdg'][1]])

        # Check if state is a terminal state, then stop simulation.
        if done is True:
            self.myclient.send_event(b'STACKCMD', 'HOLD')

        # Reset data flag when data has been processed.
        recdataflag = False

        return self.state, reward, done, {}

    def render(self, mode='human'):
        """
        Obsolete rendering platform, for debugging purposes.
        To render simulation, start bluesky --client and connect to running server.
        """

        screen_width = 600
        screen_height = 600

        scale = screen_width / 120

        latplane = self.state[0]
        lonplane = self.state[1]
        latplane2 = self.state_object[0]
        lonplane2 = self.state_object[1]

        length_plane = 1 * scale

        if self.viewer is None:
            #set start position
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(screen_width, screen_height)

            plane = rendering.FilledPolygon([(-length_plane, -length_plane),
                                             (0, length_plane),
                                             (length_plane, -length_plane)
                                             ])  # NOSEUP
            x_plane, y_plane = latlon_to_screen(-1, -1, latplane, lonplane,
                                                scale)
            plane.add_attr(rendering.Transform(translation=(x_plane, y_plane)))
            self.planetrans = rendering.Transform()
            plane.add_attr(self.planetrans)
            plane.set_color(0, 1, 0)
            self.viewer.add_geom(plane)

            plane2 = rendering.FilledPolygon([(-length_plane, -length_plane),
                                              (0, length_plane),
                                              (length_plane, -length_plane)
                                              ])  # NOSEUP
            x_plane2, y_plane2 = latlon_to_screen(-1, -1, latplane2, lonplane2,
                                                  scale)
            plane2.add_attr(
                rendering.Transform(translation=(x_plane2, y_plane2)))
            self.planetrans2 = rendering.Transform()
            plane2.add_attr(self.planetrans2)
            plane.set_color(1, 0, 0)
            self.viewer.add_geom(plane2)

            waypoint = rendering.make_circle(3)
            x_waypoint, y_waypoint = latlon_to_screen(-1, -1,
                                                      bs.traf.actwp.lat[0],
                                                      bs.traf.actwp.lon[0],
                                                      scale)
            waypoint.add_attr(
                rendering.Transform(translation=(x_waypoint, y_waypoint)))
            self.viewer.add_geom(waypoint)

            self.latplane_init = latplane
            self.lonplane_init = lonplane
            self.latplane2_init = latplane2
            self.lonplane2_init = lonplane2

        x_screen_dx, y_screen_dy = dlatlon_to_screen(self.latplane_init,
                                                     self.lonplane_init,
                                                     latplane, lonplane, scale)
        self.planetrans.set_translation(x_screen_dx, y_screen_dy)
        # self.planetrans.set_rotation(1)

        x_screen_dx2, y_screen_dy2 = dlatlon_to_screen(self.latplane2_init,
                                                       self.lonplane2_init,
                                                       latplane2, lonplane2,
                                                       scale)
        self.planetrans2.set_translation(x_screen_dx2, y_screen_dy2)
        # self.planetrans2.set_rotation(self.state_object[2]*0.0174532925)

        return self.viewer.render(return_rgb_array=mode == 'rgb_array')

    def close(self):
        if self.viewer:
            self.viewer.close()
            self.viewer = None
示例#4
0
    def __init__(self, **kwargs):
        """
        # Initialize client server interface
        # NodeID: is required for each individual environment to connect to its respective simulation node, when
        # running a single simulation this argument is not required.
        # n_cpu: total amount of nodes that have to be initialized.
        # NOTE: N_cpu and len(NodeID) have to be the same
        # scenfile: The specific scenario file this environment is going to run.
        # TODO:
            -Use bs.settings for ports and plugin check.
            -Starting of server integration (Now the server has to separately be started by using bluesky.py --headless
        """
        global recdataflag, recdata
        recdataflag = False
        recdata = None
        self.NodeID = kwargs['NodeID']
        self.n_cpu = kwargs['n_cpu']
        self.cfgfile = ''
        self.scenfile = kwargs['scenfile']
        if self.scenfile is None:
            self.scenfile = './synthetics/super/super3.scn'

        if self.NodeID != 0 and self.n_cpu >= 1:
            # print('Client {0:2d} waiting for node to initialize'.format(self.NodeID))
            time.sleep(5)

        self.myclient = Client()
        self.myclient.connect(event_port=52000, stream_port=52001)
        self.myclient.receive(1000)
        self.myclient.actnode(
            self.myclient.servers[self.myclient.host_id]['nodes'][self.NodeID])
        self.myclient.event_received.connect(on_event)

        if self.NodeID == 0 and self.n_cpu >= 1:
            str_to_send = 'addnodes ' + str(self.n_cpu - 1)
            # print(str_to_send)
            self.myclient.send_event(b'STACKCMD', str_to_send)
            print('Initializing {0:2d} nodes'.format(self.n_cpu))
            time.sleep(5)

        # Set constants for environment
        self.nm = 1852  # Nautical miles [nm] in meter [m]
        self.ep = 0
        self.los = 5 * 1.05  # [nm] Horizontal separation minimum for resolution
        self.wpt_reached = 5  # [nm]
        self.min_hdg = 0  # [deg]
        self.max_hdg = 360  # [deg]
        self.min_lat = -1  # [lat/lon]
        self.max_lat = 1  # [lat/lon]
        self.min_lon = -1  # [lat/lon]
        self.max_lon = 1  # [lat/lon]

        self.min_dist_plane = self.los * 0.95
        self.max_dist_plane = 125
        self.min_dist_waypoint = self.wpt_reached * 0.95
        self.max_dist_waypoint = 125

        # TODO:State definitions and other state information still has to be formalized.
        self.state = None
        self.state_object = None

        # Define observation bounds and normalize so that all values range between -1 and 1 or 0 and 1,
        # normalization improves neural networks ability to converge
        self.low_obs = np.array([
            self.min_lat, self.min_lon,
            normalizer(self.min_hdg, 'HDGToNorm', self.min_hdg, self.max_hdg),
            normalizer(self.min_dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(self.min_dist_waypoint, 'DistToNorm',
                       self.min_dist_waypoint, self.max_dist_waypoint)
        ])
        self.high_obs = np.array([
            self.max_lat, self.max_lon,
            normalizer(self.max_hdg, 'HDGToNorm', self.min_hdg, self.max_hdg),
            normalizer(self.max_dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(self.max_dist_waypoint, 'DistToNorm',
                       self.min_dist_waypoint, self.max_dist_waypoint)
        ])
        self.viewer = None

        # observation is a array of shape (5,) [latitude,longitude,hdg,dist_plane,dist_waypoint]
        self.observation_space = spaces.Box(low=self.low_obs,
                                            high=self.high_obs,
                                            dtype=np.float32)
        # Action space is normalized heading, shape (1,)
        self.action_space = spaces.Box(low=-1,
                                       high=1,
                                       shape=(1, ),
                                       dtype=np.float32)
示例#5
0
class BlueSkyEnv2(gym.Env):
    def __init__(self):
        """
        # Initialize client server interface
        # NodeID: is required for each individual environment to connect to its respective simulation node, when
        # running a single simulation this argument is not required.
        # n_cpu: total amount of nodes that have to be initialized.
        # NOTE: N_cpu and len(NodeID) have to be the same
        # scenfile: The specific scenario file this environment is going to run.
        # TODO:
            -Use bs.settings for ports and plugin check.
            -Starting of server integration (Now the server has to separately be started by using bluesky.py --headless
        """
        global recdataflag, recdata
        recdataflag = False
        recdata = None

        self.connected = False

        self.scenfile = './synthetics/super/super2.scn'

        self.min_hdg = 0  # [deg]
        self.max_hdg = 360  # [deg]
        self.min_lat = -1  # [lat/lon]
        self.max_lat = 1  # [lat/lon]
        self.min_lon = -1  # [lat/lon]
        self.max_lon = 1  # [lat/lon]

        self.min_dist_waypoint = 5
        self.max_dist_waypoint = 125

        # Define observation bounds and normalize so that all values range between -1 and 1 or 0 and 1,
        # normalization improves neural networks ability to converge
        self.low_obs = np.array(
            [self.min_lat, self.min_lon, self.min_hdg, self.min_dist_waypoint])

        self.high_obs = np.array(
            [self.max_lat, self.max_lon, self.max_hdg, self.max_dist_waypoint])

        # observation is a array of shape (4,) [latitude,longitude,hdg,dist_plane,dist_waypoint]
        self.observation_space = spaces.Box(low=self.low_obs,
                                            high=self.high_obs,
                                            dtype=np.float32)
        # Action space is normalized heading, shape (1,)
        self.action_space = spaces.Box(low=-1,
                                       high=1,
                                       shape=(1, ),
                                       dtype=np.float32)

    def reset(self):
        """
        Reset the environment to initial state
        recdata is a dict that contains requested simulation data from Bluesky. Can be changed in plugin MLCONTROL.
        """
        global recdataflag
        self.ep = 0
        if not self.connected:
            self.NodeID = 0
            self.myclient = Client()
            self.myclient.connect(event_port=52000, stream_port=52001)
            self.myclient.receive(1000)
            self.myclient.event_received.connect(on_event)
            self.myclient.actnode(self.myclient.servers[self.myclient.host_id]
                                  ['nodes'][self.NodeID])
            self.connected = True

        #Initialize env.
        str_to_send = 'IC ' + self.scenfile + '; MLSTEP'
        recdataflag = False
        self.myclient.send_event(b'STACKCMD', str_to_send)

        while not recdataflag:
            self.myclient.receive(1000)

        dist_wpt = tools.geo.kwikdist(recdata['lat'][0], recdata['lon'][0],
                                      recdata['actwplat'][0],
                                      recdata['actwplon'][0])
        self.state = np.array([
            recdata['lat'][0], recdata['lon'][0],
            normalizer(recdata['hdg'][0], 'HDGToNorm', self.min_hdg,
                       self.max_hdg),
            normalizer(dist_wpt, 'DistToNorm', self.min_dist_waypoint,
                       self.max_dist_waypoint)
        ])
        # Reset data flag when data has been processed.
        recdataflag = False
        return self.state

    def step(self, action):
        """
        This function interacts with the Bluesky simulation node/server, and gives a action command to the environment
        and returns state(t + step)
        Reward accumulation is done outside this step function, so this function returns the reward gained during
        this simulation step.
        """
        # Initialize step parameters
        global recdataflag
        done = False
        reward = 0
        self.ep = self.ep + 1

        # Loop over every agent
        action_tot = normalizer(action[0], 'NormToHDG', self.min_hdg,
                                self.max_hdg)
        self.myclient.send_event(
            b'STACKCMD',
            'SUP0 HDG ' + np.array2string(action_tot) + '; MLSTEP')

        # Wait for server to respond
        while not recdataflag:
            self.myclient.receive(1000)

        # Do some intermediate state update calculations.
        dist_wpt = tools.geo.kwikdist(recdata['lat'][0], recdata['lon'][0],
                                      recdata['actwplat'][0],
                                      recdata['actwplon'][0])

        # Assign rewards if goals states are met or any other arbitary rewards.

        if dist_wpt <= self.min_dist_waypoint:
            reward = reward + 10
            done = True

        if self.ep >= 500:
            done = True

        #Penalty for every timestep
        reward = reward - 0.1

        # Update state to state(t + step)
        self.state = np.array([
            recdata['lat'][0], recdata['lon'][0],
            normalizer(recdata['hdg'][0], 'HDGToNorm', self.min_hdg,
                       self.max_hdg),
            normalizer(dist_wpt, 'DistToNorm', self.min_dist_waypoint,
                       self.max_dist_waypoint)
        ])

        if done is True:
            self.myclient.send_event(b'STACKCMD', 'HOLD')

        # Reset data flag when data has been processed.
        recdataflag = False

        return self.state, reward, done, {}

    def render(self, mode='human'):
        """
        Obsolete rendering platform, for debugging purposes.
        To render simulation, start bluesky --client and connect to running server.
        """
        return

    def close(self):
        if self.viewer:
            self.viewer.close()
            self.viewer = None
示例#6
0
from bluesky.network.client import Client

myclient = Client()
myclient.connect(event_port=11000, stream_port=11001)
# myclient.subscribe(b'ACDATA')

staterecvd = False


def on_event(eventname, eventdata, sender_id):
    if eventname == b'MLSTATEREPLY':
        print('ML State reply received:', eventname)
        global staterecvd
        staterecvd = True


myclient.event_received.connect(on_event)
# On startup, wait for server information
myclient.receive(1000)

while True:
    staterecvd = False
    v = input('Press enter for next simulation step:')
    myclient.send_event(b'STACKCMD', 'MLSTEP')
    while not staterecvd:
        myclient.receive(1)
示例#7
0
    def __init__(self, **kwargs):
        def on_event(eventname, eventdata, sender_id):
            print(eventdata)
            print(sender_id)

        def on_stream(streamname, data, sender_id):
            print('Stream data received:', streamname)
            self.received_data = True
            self.data = data

        ## Enable client server interface
        self.NodeID = kwargs['NodeID']
        self.received_data = False
        myclient = Client()
        myclient.connect(event_port=11000, stream_port=11001)
        myclient.receive()
        myclient.actnode(
            myclient.servers[myclient.host_id]['nodes'][self.NodeID])
        myclient.subscribe(b'ACDATA')

        myclient.stream_received.connect(on_stream)
        myclient.event_received.connect(on_event)

        while not self.received_data:
            myclient.receive()

        self.nm = 1852
        self.ep = 0
        self.los = 5 * 1.05  # [nm] Horizontal separation minimum for resolution
        self.wpt_reached = 5
        # observation is a array of 4 collums [latitude,longitude,hdg,dist_plane,dist_waypoint] Real values, so not yet normalized
        self.min_hdg = 0  #0
        self.max_hdg = 360  #360
        self.min_lat = -1
        self.max_lat = 1
        self.min_lon = -1
        self.max_lon = 1
        # max values based upon size of latlon box
        self.min_dist_plane = self.los * 0.95
        self.max_dist_plane = 125
        self.min_dist_waypoint = self.wpt_reached * 0.95
        self.max_dist_waypoint = 125

        # define observation bounds
        self.low_obs = np.array([
            self.min_lat, self.min_lon,
            normalizer(self.min_hdg, 'HDGToNorm', self.min_hdg, self.max_hdg),
            normalizer(self.min_dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(self.min_dist_waypoint, 'DistToNorm',
                       self.min_dist_waypoint, self.max_dist_waypoint)
        ])
        self.high_obs = np.array([
            self.max_lat, self.max_lon,
            normalizer(self.max_hdg, 'HDGToNorm', self.min_hdg, self.max_hdg),
            normalizer(self.max_dist_plane, 'DistToNorm', self.min_dist_plane,
                       self.max_dist_plane),
            normalizer(self.max_dist_waypoint, 'DistToNorm',
                       self.min_dist_waypoint, self.max_dist_waypoint)
        ])
        self.viewer = None

        # Initialize bluesky
        self.mode = 'sim-detached'
        self.discovery = ('--discoverable' in sys.argv
                          or self.mode[-8:] == 'headless')
        # Check if alternate config file is passed or a default scenfile
        self.cfgfile = ''
        self.scnfile = '/synthetics/super/super3.scn'
        bs.init(self.mode,
                discovery=self.discovery,
                cfgfile=self.cfgfile,
                scnfile=self.scnfile)
        bs.sim.fastforward()
        self.observation_space = spaces.Box(low=self.low_obs,
                                            high=self.high_obs,
                                            dtype=np.float32)
        # self.action_space = spaces.Discrete(360)
        self.action_space = spaces.Box(low=-1,
                                       high=1,
                                       shape=(1, ),
                                       dtype=np.float32)