示例#1
0
def Reputation_threshold(image1, image2, image3, image4, image5,
                         crowd_density_array):

    input_image1 = cv2.imread(str(image1))
    input_image2 = cv2.imread(str(image2))
    input_image3 = cv2.imread(str(image3))
    input_image4 = cv2.imread(str(image4))
    input_image5 = cv2.imread(str(image5))

    input_image_1 = fix_image_size(input_image1)
    blur_map_1, score_1, blurry_1 = estimate_blur(input_image_1)

    input_image_2 = fix_image_size(input_image2)
    blur_map_2, score_2, blurry_2 = estimate_blur(input_image_2)

    input_image_3 = fix_image_size(input_image3)
    blur_map_3, score_3, blurry_3 = estimate_blur(input_image_3)

    input_image_4 = fix_image_size(input_image4)
    blur_map_4, score_4, blurry_4 = estimate_blur(input_image_4)

    input_image_5 = fix_image_size(input_image5)
    blur_map_5, score_5, blurry_5 = estimate_blur(input_image_5)

    # print("Quality_score1: {0}, blurry1: {1}".format(score_1, blurry_1))
    # print("Quality_score2: {0}, blurry2: {1}".format(score_2, blurry_2))
    # print("Quality_score3: {0}, blurry3: {1}".format(score_3, blurry_3))
    # print("Quality_score4: {0}, blurry4: {1}".format(score_4, blurry_4))
    # print("Quality_score5: {0}, blurry5: {1}".format(score_5, blurry_5))
    """    if args.display:
            cv2.imshow("input", input_image1)
            cv2.imshow("result", pretty_blur_map(blur_map))
            cv2.waitKey(0)"""

    img_gray = cv2.cvtColor(input_image1, cv2.COLOR_BGR2GRAY)
    noise_value_img_1 = estimate_noise(img_gray)

    img_gray = cv2.cvtColor(input_image2, cv2.COLOR_BGR2GRAY)
    noise_value_img_2 = estimate_noise(img_gray)

    img_gray = cv2.cvtColor(input_image3, cv2.COLOR_BGR2GRAY)
    noise_value_img_3 = estimate_noise(img_gray)

    img_gray = cv2.cvtColor(input_image4, cv2.COLOR_BGR2GRAY)
    noise_value_img_4 = estimate_noise(img_gray)

    img_gray = cv2.cvtColor(input_image5, cv2.COLOR_BGR2GRAY)
    noise_value_img_5 = estimate_noise(img_gray)

    # print("Noise of camera 1 is ", noise_value_img_1)
    # print("Noise of camera 2 is ", noise_value_img_2)
    # print("Noise of camera 3 is ", noise_value_img_3)
    # print("Noise of camera 4 is ", noise_value_img_4)
    # print("Noise of camera 5 is ", noise_value_img_5)

    global overlapping_array

    view_7 = cameras(0, overlapping_array)
    view_1 = cameras(1, [0.3, 1, 0.3, 0.5, 0.4])
    view_5 = cameras(2, [0.5, 0.3, 1, 0.4, 0.4])
    view_6 = cameras(3, [0.4, 0.5, 0.4, 1, 0.4])
    view_8 = cameras(4, [0.2, 0.5, 0.3, 0.4, 1])

    # crowd density will be calculated from a separate code.These are dummy values

    #scalar = StandardScaler(with_mean=False)
    #crowd_density_array = [[10], [5], [7]]
    crowd_density_array = [crowd_density_array]
    #scalar.fit(crowd_density_array)
    #crowd_density_array = scalar.transform(crowd_density_array)
    #[crowd_density_array] = np.array(crowd_density_array).reshape((1, 3))
    [crowd_density_array] = normalize(crowd_density_array, norm='l2')

    view_7.crowd_density([view_7.cid, crowd_density_array[view_7.cid]])
    view_7.crowd_density([view_1.cid, crowd_density_array[view_1.cid]])
    view_7.crowd_density([view_5.cid, crowd_density_array[view_5.cid]])
    view_7.crowd_density([view_6.cid, crowd_density_array[view_6.cid]])
    view_7.crowd_density([view_8.cid, crowd_density_array[view_8.cid]])

    view_1.crowd_density([view_1.cid, crowd_density_array[view_1.cid]])
    view_1.crowd_density([view_7.cid, crowd_density_array[view_7.cid]])
    view_1.crowd_density([view_5.cid, crowd_density_array[view_5.cid]])
    view_1.crowd_density([view_6.cid, crowd_density_array[view_6.cid]])
    view_1.crowd_density([view_8.cid, crowd_density_array[view_8.cid]])

    view_5.crowd_density([view_5.cid, crowd_density_array[view_5.cid]])
    view_5.crowd_density([view_7.cid, crowd_density_array[view_7.cid]])
    view_5.crowd_density([view_1.cid, crowd_density_array[view_1.cid]])
    view_5.crowd_density([view_6.cid, crowd_density_array[view_6.cid]])
    view_5.crowd_density([view_8.cid, crowd_density_array[view_8.cid]])

    #scalar = StandardScaler(with_mean=False)
    #noise_array = [[noise_value_img_1], [noise_value_img_2], [noise_value_img_3]]
    noise_array = [[
        noise_value_img_1, noise_value_img_2, noise_value_img_3,
        noise_value_img_4, noise_value_img_5
    ]]
    #scalar.fit(noise_array)
    #noise_array = scalar.transform(noise_array)
    #[noise_array] = np.array(noise_array).reshape((1, 3))
    [noise_array] = normalize(noise_array, norm='l2')

    view_7.noise([view_7.cid, noise_array[view_7.cid]])
    view_7.noise([view_1.cid, noise_array[view_1.cid]])
    view_7.noise([view_5.cid, noise_array[view_5.cid]])
    view_7.noise([view_6.cid, noise_array[view_6.cid]])
    view_7.noise([view_8.cid, noise_array[view_8.cid]])

    view_1.noise([view_7.cid, noise_array[view_7.cid]])
    view_1.noise([view_1.cid, noise_array[view_1.cid]])
    view_1.noise([view_5.cid, noise_array[view_5.cid]])
    view_1.noise([view_6.cid, noise_array[view_6.cid]])
    view_1.noise([view_8.cid, noise_array[view_8.cid]])

    view_5.noise([view_7.cid, noise_array[view_7.cid]])
    view_5.noise([view_1.cid, noise_array[view_1.cid]])
    view_5.noise([view_5.cid, noise_array[view_5.cid]])
    view_5.noise([view_6.cid, noise_array[view_6.cid]])
    view_5.noise([view_8.cid, noise_array[view_8.cid]])

    #scalar = StandardScaler(with_mean=False)
    #blur_array = [[score_1], [score_2], [score_3]]
    blur_array = [[score_1, score_2, score_3, score_4, score_5]]
    #scalar.fit(blur_array)
    #blur_array = scalar.transform(blur_array)
    #[blur_array] = np.array(blur_array).reshape((1, 3))
    [blur_array] = normalize(blur_array, norm='l2')

    view_7.blur([view_7.cid, blur_array[view_7.cid]])
    view_7.blur([view_1.cid, blur_array[view_1.cid]])
    view_7.blur([view_5.cid, blur_array[view_5.cid]])
    view_7.blur([view_6.cid, blur_array[view_6.cid]])
    view_7.blur([view_8.cid, blur_array[view_8.cid]])

    view_1.blur([view_1.cid, blur_array[view_1.cid]])
    view_1.blur([view_7.cid, blur_array[view_7.cid]])
    view_1.blur([view_5.cid, blur_array[view_5.cid]])
    view_1.blur([view_6.cid, blur_array[view_6.cid]])
    view_1.blur([view_8.cid, blur_array[view_8.cid]])

    view_5.blur([view_5.cid, blur_array[view_5.cid]])
    view_5.blur([view_7.cid, blur_array[view_7.cid]])
    view_5.blur([view_1.cid, blur_array[view_1.cid]])
    view_5.blur([view_6.cid, blur_array[view_6.cid]])
    view_5.blur([view_8.cid, blur_array[view_8.cid]])

    thresh_view_7 = list(view_7.threshold_calc())
    #thresh_view_1 = view_1.threshold_calc()
    #thresh_view_5 = view_5.threshold_calc()

    # print("Threshold of cameras w.r.t to View7 is ", thresh_view_7)
    return thresh_view_7
示例#2
0
    for image_path in find_images(args.images):
        image = cv2.imread(str(image_path))
        if image is None:
            logging.warning(
                f'warning! failed to read image from {image_path}; skipping!')
            continue

        logging.info(f'processing {image_path}')

        if fix_size:
            image = fix_image_size(image)
        else:
            logging.warning(
                'not normalizing image size for consistent scoring!')

        blur_map, score, blurry = estimate_blur(image,
                                                threshold=args.threshold)

        logging.info(
            f'image_path: {image_path} score: {score} blurry: {blurry}')
        results.append({
            'input_path': str(image_path),
            'score': score,
            'blurry': blurry
        })

        if args.display:
            cv2.imshow('input', image)
            cv2.imshow('result', pretty_blur_map(blur_map))

            if cv2.waitKey(0) == ord('q'):
                logging.info('exiting...')
示例#3
0
                        help='set logging level to debug',
                        action="store_true")
    parser.add_argument("-d",
                        "--display",
                        dest='display',
                        help='display images',
                        action="store_true")

    args = parser.parse_args()

    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)

    assert os.path.exists(args.input_image)

    input_image = cv2.imread(args.input_image)

    if args.fix_size:
        input_image = fix_image_size(input_image)

    blur_map, score, blurry = estimate_blur(input_image)

    logging.info("score: {0}, blurry: {1}".format(score, blurry))

    if args.display:
        cv2.imshow("input", input_image)
        cv2.imshow("result", pretty_blur_map(blur_map))
        cv2.waitKey(0)
示例#4
0
            self.threshold[count] += weightage[3] * i
            count += 1

        [self.threshold] = normalize([self.threshold], norm='l2')
        return self.threshold


print("Enter the input images name for the three cameras")
s1, s2, s3 = raw_input().split()

input_image1 = cv2.imread(s1)
input_image2 = cv2.imread(s2)
input_image3 = cv2.imread(s3)

input_image_1 = fix_image_size(input_image1)
blur_map_1, score_1, blurry_1 = estimate_blur(input_image_1)

input_image_2 = fix_image_size(input_image2)
blur_map_2, score_2, blurry_2 = estimate_blur(input_image_2)

input_image_3 = fix_image_size(input_image3)
blur_map_3, score_3, blurry_3 = estimate_blur(input_image_3)

print("Quality_score1: {0}, blurry1: {1}".format(score_1, blurry_1))
print("Quality_score2: {0}, blurry2: {1}".format(score_2, blurry_2))
print("Quality_score3: {0}, blurry3: {1}".format(score_3, blurry_3))
"""    if args.display:
        cv2.imshow("input", input_image1)
        cv2.imshow("result", pretty_blur_map(blur_map))
        cv2.waitKey(0)"""