class MATS2DMplCSDEEQ(MATSBase, InteractiveModel): concrete_type = tr.Int gamma_T = tr.Float(100000., label="Gamma", desc=" Tangential Kinematic hardening modulus", enter_set=True, auto_set=False) K_T = tr.Float(10000., label="K", desc="Tangential Isotropic harening", enter_set=True, auto_set=False) S_T = tr.Float(0.005, label="S", desc="Damage strength", enter_set=True, auto_set=False) r_T = tr.Float(9., label="r", desc="Damage cumulation parameter", enter_set=True, auto_set=False) e_T = tr.Float(12., label="e", desc="Damage cumulation parameter", enter_set=True, auto_set=False) c_T = tr.Float(4.6, label="c", desc="Damage cumulation parameter", enter_set=True, auto_set=False) tau_pi_bar = tr.Float(1.7, label="Tau_bar", desc="Reversibility limit", enter_set=True, auto_set=False) a = tr.Float(0.003, label="a", desc="Lateral pressure coefficient", enter_set=True, auto_set=False) ipw_view = View( Item('gamma_T', latex=r'\gamma_\mathrm{T}', minmax=(10,100000)), Item('K_T', latex=r'K_\mathrm{T}', minmax=(10, 10000)), Item('S_T', latex=r'S_\mathrm{T}', minmax=(0.001, 0.01)), Item('r_T', latex=r'r_\mathrm{T}', minmax=(1, 3)), Item('e_T', latex=r'e_\mathrm{T}', minmax=(1, 40)), Item('c_T', latex=r'c_\mathrm{T}', minmax=(1, 10)), Item('tau_pi_bar', latex=r'\bar{\tau}', minmax=(1, 10)), Item('a', latex=r'a', minmax=(0.001, 3)), ) # ------------------------------------------- # Normal_Tension constitutive law parameters (without cumulative normal strain) # ------------------------------------------- Ad = tr.Float(100.0, label="a", desc="brittleness coefficient", enter_set=True, auto_set=False) eps_0 = tr.Float(0.00008, label="a", desc="threshold strain", enter_set=True, auto_set=False) # ----------------------------------------------- # Normal_Compression constitutive law parameters # ----------------------------------------------- K_N = tr.Float(10000., label="K_N", desc=" Normal isotropic harening", enter_set=True, auto_set=False) gamma_N = tr.Float(5000., label="gamma_N", desc="Normal kinematic hardening", enter_set=True, auto_set=False) sigma_0 = tr.Float(30., label="sigma_0", desc="Yielding stress", enter_set=True, auto_set=False) # ------------------------------------------------------------------------- # Cached elasticity tensors # ------------------------------------------------------------------------- E = tr.Float(35e+3, label="E", desc="Young's Modulus", auto_set=False, input=True) nu = tr.Float(0.2, label='nu', desc="Poison ratio", auto_set=False, input=True) def _get_lame_params(self): # la = self.E * self.nu / ((1. + self.nu) * (1. - 2. * self.nu)) # # second Lame parameter (shear modulus) # mu = self.E / (2. + 2. * self.nu) la = self.E * self.nu / ((1. + self.nu) * (1. - self.nu)) mu = self.E / (2. + 2. * self.nu) return la, mu D_abef = tr.Property(tr.Array, depends_on='+input') @tr.cached_property def _get_D_abef(self): la = self._get_lame_params()[0] mu = self._get_lame_params()[1] delta = np.identity(2) D_abef = (np.einsum(',ij,kl->ijkl', la, delta, delta) + np.einsum(',ik,jl->ijkl', mu, delta, delta) + np.einsum(',il,jk->ijkl', mu, delta, delta)) return D_abef @tr.cached_property def _get_state_var_shapes(self): return {'w_N_Emn': (self.n_mp,), 'z_N_Emn': (self.n_mp,), 'alpha_N_Emn': (self.n_mp,), 'r_N_Emn': (self.n_mp,), 'eps_N_p_Emn': (self.n_mp,), 'sigma_N_Emn': (self.n_mp,), 'w_T_Emn': (self.n_mp,), 'z_T_Emn': (self.n_mp,), 'alpha_T_Emna': (self.n_mp, 2), 'eps_T_pi_Emna': (self.n_mp, 2), } #-------------------------------------------------------------- # microplane constitutive law (normal behavior CP + TD) # (without cumulative normal strain for fatigue under tension) #-------------------------------------------------------------- def get_normal_law(self, eps_N_Emn, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, eps_aux): eps_N_Aux = self._get_e_N_Emn_2(eps_aux) E_N = self.E / (1.0 - 2.0 * self.nu) # E_N = self.E * (1.0 + 2.0 * self.nu) / (1.0 - self.nu**2) # When deciding if a microplane is in tensile or compression, we define a strain boundary such that that # sigmaN <= 0 if eps_N < 0, avoiding entering in the quadrant of compressive strains and traction sigma_trial = E_N * (eps_N_Emn - eps_N_p_Emn) pos1 = [(eps_N_Emn < -1e-6) & (sigma_trial > 1e-6)] # looking for microplanes violating strain boundary sigma_trial [pos1[0]] = 0 pos = eps_N_Emn > 1e-6 # microplanes under traction pos2 = eps_N_Emn < -1e-6 # microplanes under compression H = 1.0 * pos H2 = 1.0 * pos2 # thermo forces sigma_N_Emn_tilde = E_N * (eps_N_Emn - eps_N_p_Emn) sigma_N_Emn_tilde[pos1[0]] = 0 # imposing strain boundary Z = self.K_N * z_N_Emn X = self.gamma_N * alpha_N_Emn * H2 h = (self.sigma_0 + Z) * H2 f_trial = (abs(sigma_N_Emn_tilde - X) - h) * H2 # threshold plasticity thres_1 = f_trial > 1e-6 delta_lamda = f_trial / \ (E_N / (1 - omega_N_Emn) + abs(self.K_N) + self.gamma_N) * thres_1 eps_N_p_Emn = eps_N_p_Emn + delta_lamda * \ np.sign(sigma_N_Emn_tilde - X) z_N_Emn = z_N_Emn + delta_lamda alpha_N_Emn = alpha_N_Emn + delta_lamda * \ np.sign(sigma_N_Emn_tilde - X) def R_N(r_N_Emn): return (1.0 / self.Ad) * (-r_N_Emn / (1.0 + r_N_Emn)) Y_N = 0.5 * H * E_N * (eps_N_Emn - eps_N_p_Emn) ** 2.0 Y_0 = 0.5 * E_N * self.eps_0 ** 2.0 f = (Y_N - (Y_0 + R_N(r_N_Emn))) # threshold damage thres_2 = f > 1e-6 def f_w(Y): return 1.0 - 1.0 / (1.0 + self.Ad * (Y - Y_0)) omega_N_Emn[f > 1e-6] = f_w(Y_N)[f > 1e-6] r_N_Emn[f > 1e-6] = -omega_N_Emn[f > 1e-6] sigma_N_Emn = (1.0 - H * omega_N_Emn) * E_N * (eps_N_Emn - eps_N_p_Emn) pos1 = [(eps_N_Emn < -1e-6) & (sigma_trial > 1e-6)] # looking for microplanes violating strain boundary sigma_N_Emn[pos1[0]] = 0 Z = self.K_N * z_N_Emn X = self.gamma_N * alpha_N_Emn * H2 return omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, sigma_N_Emn, Z, X, Y_N #------------------------------------------------------------------------- # microplane constitutive law (Tangential CSD)-(Pressure sensitive cumulative damage) #------------------------------------------------------------------------- def get_tangential_law(self, eps_T_Emna, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_N_Emn): E_T = self.E / (1.0 + self.nu) # E_T = self.E * (1.0 - 4 * self.nu) / \ # ((1.0 + self.nu) * (1.0 - 2 * self.nu)) # E_T = self.E * (1.0 - 3.0 * self.nu) / (1.0 - self.nu**2) # thermo forces sig_pi_trial = E_T * (eps_T_Emna - eps_T_pi_Emna) Z = self.K_T * z_T_Emn X = self.gamma_T * alpha_T_Emna norm_1 = np.sqrt( np.einsum( '...na,...na->...n', (sig_pi_trial - X), (sig_pi_trial - X)) ) Y = 0.5 * E_T * \ np.einsum( '...na,...na->...n', (eps_T_Emna - eps_T_pi_Emna), (eps_T_Emna - eps_T_pi_Emna)) # threshold f = norm_1 - self.tau_pi_bar - \ Z + self.a * sigma_N_Emn plas_1 = f > 1e-6 elas_1 = f < 1e-6 delta_lamda = f / \ (E_T / (1.0 - omega_T_Emn) + self.gamma_T + self.K_T) * plas_1 norm_2 = 1.0 * elas_1 + np.sqrt( np.einsum( '...na,...na->...n', (sig_pi_trial - X), (sig_pi_trial - X))) * plas_1 eps_T_pi_Emna[..., 0] = eps_T_pi_Emna[..., 0] + plas_1 * delta_lamda * \ ((sig_pi_trial[..., 0] - X[..., 0]) / (1.0 - omega_T_Emn)) / norm_2 eps_T_pi_Emna[..., 1] = eps_T_pi_Emna[..., 1] + plas_1 * delta_lamda * \ ((sig_pi_trial[..., 1] - X[..., 1]) / (1.0 - omega_T_Emn)) / norm_2 omega_T_Emn += ((1 - omega_T_Emn) ** self.c_T) * \ (delta_lamda * (Y / self.S_T) ** self.r_T) * \ (self.tau_pi_bar / (self.tau_pi_bar + self.a * sigma_N_Emn)) ** self.e_T alpha_T_Emna[..., 0] = alpha_T_Emna[..., 0] + plas_1 * delta_lamda * \ (sig_pi_trial[..., 0] - X[..., 0]) / norm_2 alpha_T_Emna[..., 1] = alpha_T_Emna[..., 1] + plas_1 * delta_lamda * \ (sig_pi_trial[..., 1] - X[..., 1]) / norm_2 z_T_Emn = z_T_Emn + delta_lamda sigma_T_Emna = np.einsum( '...n,...na->...na', (1 - omega_T_Emn), E_T * (eps_T_Emna - eps_T_pi_Emna)) Z = self.K_T * z_T_Emn X = self.gamma_T * alpha_T_Emna Y = 0.5 * E_T * \ np.einsum( '...na,...na->...n', (eps_T_Emna - eps_T_pi_Emna), (eps_T_Emna - eps_T_pi_Emna)) return omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_T_Emna, Z, X, Y # #------------------------------------------------------------------------- # # MICROPLANE-Kinematic constraints # #------------------------------------------------------------------------- #------------------------------------------------- # get the operator of the microplane normals _MPNN = tr.Property(depends_on='n_mp') @tr.cached_property def _get__MPNN(self): print(self._MPN) MPNN_nij = np.einsum('ni,nj->nij', self._MPN, self._MPN) return MPNN_nij # get the third order tangential tensor (operator) for each microplane _MPTT = tr.Property(depends_on='n_mp') @tr.cached_property def _get__MPTT(self): delta = np.identity(2) MPTT_nijr = 0.5 * ( np.einsum('ni,jr -> nijr', self._MPN, delta) + np.einsum('nj,ir -> njir', self._MPN, delta) - 2 * np.einsum('ni,nj,nr -> nijr', self._MPN, self._MPN, self._MPN) ) return MPTT_nijr def _get_e_N_Emn_2(self, eps_Emab): # get the normal strain array for each microplane return np.einsum('nij,...ij->...n', self._MPNN, eps_Emab) def _get_e_T_Emnar_2(self, eps_Emab): # get the tangential strain vector array for each microplane MPTT_ijr = self._get__MPTT() return np.einsum('nija,...ij->...na', MPTT_ijr, eps_Emab) #-------------------------------------------------------- # return the state variables (Damage , inelastic strains) #-------------------------------------------------------- def _get_state_variables(self, eps_Emab, int_var, eps_aux): e_N_arr = self._get_e_N_Emn_2(eps_Emab) e_T_vct_arr = self._get_e_T_Emnar_2(eps_Emab) omega_N_Emn = int_var[:, 0] z_N_Emn = int_var[:, 1] alpha_N_Emn = int_var[:, 2] r_N_Emn = int_var[:, 3] eps_N_p_Emn = int_var[:, 4] sigma_N_Emn = int_var[:, 5] omega_T_Emn = int_var[:, 9] z_T_Emn = int_var[:, 10] alpha_T_Emna = int_var[:, 11:13] eps_T_pi_Emna = int_var[:, 13:15] omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, sigma_N_Emn, Z_n, X_n, Y_n = self.get_normal_law(e_N_arr, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, eps_aux) omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_T_Emna, Z_T, X_T, Y_T = self.get_tangential_law(e_T_vct_arr, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_N_Emn) # Definition internal variables / forces per column: 1) damage N, 2)iso N, 3)kin N, 4)consolidation N, 5) eps p N, # 6) sigma N, 7) iso F N, 8) kin F N, 9) energy release N, 10) damage T, 11) iso T, 12-13) kin T, 14-15) eps p T, # 16-17) sigma T, 18) iso F T, 19-20) kin F T, 21) energy release T int_var[:, 0] = omega_N_Emn int_var[:, 1] = z_N_Emn int_var[:, 2] = alpha_N_Emn int_var[:, 3] = r_N_Emn int_var[:, 4] = eps_N_p_Emn int_var[:, 5] = sigma_N_Emn int_var[:, 6] = Z_n int_var[:, 7] = X_n int_var[:, 8] = Y_n int_var[:, 9] = omega_T_Emn int_var[:, 10] = z_T_Emn int_var[:, 11:13] = alpha_T_Emna int_var[:, 13:15] = eps_T_pi_Emna int_var[:, 15:17] = sigma_T_Emna int_var[:, 17] = Z_T int_var[:, 18:20] = X_T int_var[:, 20] = Y_T return int_var #--------------------------------------------------------------------- # Extra homogenization of damage tensor in case of two damage parameters # Returns the 4th order damage tensor 'beta4' using (ref. [Baz99], Eq.(63)) #--------------------------------------------------------------------- def _get_beta_Emabcd_2(self, eps_Emab, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, eps_aux): # Returns the 4th order damage tensor 'beta4' using #(cf. [Baz99], Eq.(63)) eps_N_Emn = self._get_e_N_Emn_2(eps_Emab) eps_T_Emna = self._get_e_T_Emnar_2(eps_Emab) omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, sigma_N_Emn, Z_n, X_n, Y_n = self.get_normal_law( eps_N_Emn, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, eps_aux) omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_T_Emna, Z_T, X_T, Y_T = self.get_tangential_law( eps_T_Emna, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_N_Emn) delta = np.identity(2) beta_N = np.sqrt(1. - omega_N_Emn) beta_T = np.sqrt(1. - omega_T_Emn) beta_ijkl = np.einsum('n, ...n,ni, nj, nk, nl -> ...ijkl', self._MPW, beta_N, self._MPN, self._MPN, self._MPN, self._MPN) + \ 0.25 * (np.einsum('n, ...n,ni, nk, jl -> ...ijkl', self._MPW, beta_T, self._MPN, self._MPN, delta) + np.einsum('n, ...n,ni, nl, jk -> ...ijkl', self._MPW, beta_T, self._MPN, self._MPN, delta) + np.einsum('n, ...n,nj, nk, il -> ...ijkl', self._MPW, beta_T, self._MPN, self._MPN, delta) + np.einsum('n, ...n,nj, nl, ik -> ...ijkl', self._MPW, beta_T, self._MPN, self._MPN, delta) - 4.0 * np.einsum('n, ...n, ni, nj, nk, nl -> ...ijkl', self._MPW, beta_T, self._MPN, self._MPN, self._MPN, self._MPN)) return beta_ijkl #----------------------------------------------------------- # Integration of the (inelastic) strains for each microplane #----------------------------------------------------------- def _get_eps_p_Emab(self, eps_Emab, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_N_Emn, eps_aux): eps_N_Emn = self._get_e_N_Emn_2(eps_Emab) eps_T_Emna = self._get_e_T_Emnar_2(eps_Emab) # plastic normal strains omegaN, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, sigma_N_Emn, Z_n, X_n, Y_n = self.get_normal_law( eps_N_Emn, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, eps_aux) # sliding tangential strains omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_T_Emna, Z_T, X_T, Y_T = self.get_tangential_law( eps_T_Emna, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_N_Emn) delta = np.identity(2) # 2-nd order plastic (inelastic) tensor eps_p_Emab = ( np.einsum('n,...n,na,nb->...ab', self._MPW, eps_N_p_Emn, self._MPN, self._MPN) + 0.5 * ( np.einsum('n,...nf,na,fb->...ab', self._MPW, eps_T_pi_Emna, self._MPN, delta) + np.einsum('n,...nf,nb,fa->...ab', self._MPW, eps_T_pi_Emna, self._MPN, delta) ) ) return eps_p_Emab #------------------------------------------------------------------------- # Evaluation - get the corrector and predictor #------------------------------------------------------------------------- def get_corr_pred(self, eps_Emab, t_n1, int_var, eps_aux, F): # Definition internal variables / forces per column: 1) damage N, 2)iso N, 3)kin N, 4)consolidation N, 5) eps p N, # 6) sigma N, 7) iso F N, 8) kin F N, 9) energy release N, 10) damage T, 11) iso T, 12-13) kin T, 14-15) eps p T, # 16-17) sigma T, 18) iso F T, 19-20) kin F T, 21) energy release T # Corrector predictor computation. #------------------------------------------------------------------ # Damage tensor (4th order) using product- or sum-type symmetrization: #------------------------------------------------------------------ eps_N_Emn = self._get_e_N_Emn_2(eps_Emab) eps_T_Emna = self._get_e_T_Emnar_2(eps_Emab) omega_N_Emn = int_var[:, 0] z_N_Emn = int_var[:, 1] alpha_N_Emn = int_var[:, 2] r_N_Emn = int_var[:, 3] eps_N_p_Emn = int_var[:, 4] sigma_N_Emn = int_var[:, 5] omega_T_Emn = int_var[:, 9] z_T_Emn = int_var[:, 10] alpha_T_Emna = int_var[:, 11:13] eps_T_pi_Emna = int_var[:, 13:15] beta_Emabcd = self._get_beta_Emabcd_2( eps_Emab, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, eps_aux ) #------------------------------------------------------------------ # Damaged stiffness tensor calculated based on the damage tensor beta4: #------------------------------------------------------------------ D_Emabcd = np.einsum( '...ijab, abef, ...cdef->...ijcd', beta_Emabcd, self.D_abef, beta_Emabcd) #---------------------------------------------------------------------- # Return stresses (corrector) and damaged secant stiffness matrix (predictor) #---------------------------------------------------------------------- # plastic strain tensor eps_p_Emab = self._get_eps_p_Emab( eps_Emab, omega_N_Emn, z_N_Emn, alpha_N_Emn, r_N_Emn, eps_N_p_Emn, omega_T_Emn, z_T_Emn, alpha_T_Emna, eps_T_pi_Emna, sigma_N_Emn, eps_aux) # elastic strain tensor eps_e_Emab = eps_Emab - eps_p_Emab # calculation of the stress tensor sig_Emab = np.einsum('...abcd,...cd->...ab', D_Emabcd, eps_e_Emab) return D_Emabcd, sig_Emab, eps_p_Emab #----------------------------------------------- # number of microplanes #----------------------------------------------- n_mp = tr.Constant(360) #----------------------------------------------- # get the normal vectors of the microplanes #----------------------------------------------- _MPN = tr.Property(depends_on='n_mp') @tr.cached_property def _get__MPN(self): # microplane normals: alpha_list = np.linspace(0, 2 * np.pi, self.n_mp) MPN = np.array([[np.cos(alpha), np.sin(alpha)] for alpha in alpha_list]) return MPN #------------------------------------- # get the weights of the microplanes #------------------------------------- _MPW = tr.Property(depends_on='n_mp') @tr.cached_property def _get__MPW(self): MPW = np.ones(self.n_mp) / self.n_mp * 2 return MPW
class MSX(MATS3DEval): name = 'MSX' double_pvw = Bool(True, MAT=True) ipw_view = View(Item('E'), Item('nu'), Item('double_pvw'), Item('eps_max'), Item('n_eps')) mic = EitherType(options=[('contim', VCoNTIM), ('untim', VUNTIM), ('dntim', VDNTIM)], on_option_change='reset_mic') integ_scheme = EitherType(options=[('3DM28', MSIS3DM28)]) @tr.on_trait_change('E, nu') def _set_E(self, event): self.reset_mic() def reset_mic(self): self.mic_.E_N = self.E / (1.0 - 2.0 * self.nu) self.mic_.E_T = self.E * (1.0 - 4 * self.nu) / \ ((1.0 + self.nu) * (1.0 - 2 * self.nu)) tree = ['mic', 'integ_scheme'] state_var_shapes = tr.Property(depends_on='mic, integ_scheme') @tr.cached_property def _get_state_var_shapes(self): sv_shapes = { name: (self.integ_scheme_.n_mp, ) + shape for name, shape in self.mic_.state_var_shapes.items() } return sv_shapes def _get_e_a(self, eps_ab): """ Get the microplane projected strains """ # get the normal strain array for each microplane e_N = np.einsum('nij,...ij->...n', self.integ_scheme_.MPNN, eps_ab) # get the tangential strain vector array for each microplane MPTT_ijr = self.integ_scheme_.MPTT e_T_a = np.einsum('nija,...ij->...na', MPTT_ijr, eps_ab) return np.concatenate([e_N[..., np.newaxis], e_T_a], axis=-1) def _get_beta_abcd(self, eps_ab, omega_N, omega_T, **Eps): """ Returns the 4th order damage tensor 'beta4' using (cf. [Baz99], Eq.(63)) """ MPW = self.integ_scheme_.MPW MPN = self.integ_scheme_.MPN delta = np.identity(3) beta_N = np.sqrt(1. - omega_N) beta_T = np.sqrt(1. - omega_T) beta_ijkl = ( np.einsum('n,...n,ni,nj,nk,nl->...ijkl', MPW, beta_N, MPN, MPN, MPN, MPN) + 0.25 * (np.einsum('n,...n,ni,nk,jl->...ijkl', MPW, beta_T, MPN, MPN, delta) + np.einsum('n,...n,ni,nl,jk->...ijkl', MPW, beta_T, MPN, MPN, delta) + np.einsum('n,...n,nj,nk,il->...ijkl', MPW, beta_T, MPN, MPN, delta) + np.einsum('n,...n,nj,nl,ik->...ijkl', MPW, beta_T, MPN, MPN, delta) - 4.0 * np.einsum('n,...n,ni,nj,nk,nl->...ijkl', MPW, beta_T, MPN, MPN, MPN, MPN))) return beta_ijkl def NT_to_ab(self, v_N, v_T_a): """ Integration of the (inelastic) strains for each microplane """ MPW = self.integ_scheme_.MPW MPN = self.integ_scheme_.MPN delta = np.identity(3) # 2-nd order plastic (inelastic) tensor tns_ab = (np.einsum('n,...n,na,nb->...ab', MPW, v_N, MPN, MPN) + 0.5 * (np.einsum('n,...nf,na,fb->...ab', MPW, v_T_a, MPN, delta) + np.einsum('n,...nf,nb,fa->...ab', MPW, v_T_a, MPN, delta))) return tns_ab def get_corr_pred(self, eps_ab, t_n1, **Eps): """ Corrector predictor computation. """ # ------------------------------------------------------------------ # Damage tensor (4th order) using product- or sum-type symmetrization: # ------------------------------------------------------------------ eps_a = self._get_e_a(eps_ab) sig_a, D_ab = self.mic_.get_corr_pred(eps_a, t_n1, **Eps) beta_abcd = self._get_beta_abcd(eps_ab, **Eps) # ------------------------------------------------------------------ # Damaged stiffness tensor calculated based on the damage tensor beta4: # ------------------------------------------------------------------ D_abcd = np.einsum('...ijab, abef, ...cdef->...ijcd', beta_abcd, self.D_abef, beta_abcd) if self.double_pvw: # ---------------------------------------------------------------------- # Return stresses (corrector) and damaged secant stiffness matrix (predictor) # ---------------------------------------------------------------------- eps_p_a = self.mic_.get_eps_NT_p(**Eps) if eps_p_a: eps_N_p, eps_T_p_a = eps_p_a eps_p_ab = self.NT_to_ab(eps_N_p, eps_T_p_a) eps_e_ab = eps_ab - eps_p_ab else: eps_e_ab = eps_ab sig_ab = np.einsum('...abcd,...cd->...ab', D_abcd, eps_e_ab) else: sig_N, sig_T_a = sig_a[..., 0], sig_a[..., 1:] sig_ab = self.NT_to_ab(sig_N, sig_T_a) return sig_ab, D_abcd def update_plot(self, axes): ax_sig, ax_d_sig = axes eps_max = self.eps_max n_eps = self.n_eps eps11_range = np.linspace(1e-9, eps_max, n_eps) eps_range = np.zeros((n_eps, 3, 3)) eps_range[:, 0, 0] = eps11_range state_vars = { var: np.zeros((1, ) + shape) for var, shape in self.state_var_shapes.items() } sig11_range, d_sig1111_range = [], [] for eps_ab in eps_range: try: sig_ab, D_range = self.get_corr_pred(eps_ab[np.newaxis, ...], 1, **state_vars) except ReturnMappingError: break sig11_range.append(sig_ab[0, 0, 0]) d_sig1111_range.append(D_range[0, 0, 0, 0, 0]) sig11_range = np.array(sig11_range, dtype=np.float_) eps11_range = eps11_range[:len(sig11_range)] ax_sig.plot(eps11_range, sig11_range, color='blue') d_sig1111_range = np.array(d_sig1111_range, dtype=np.float_) ax_d_sig.plot(eps11_range, d_sig1111_range, linestyle='dashed', color='gray') ax_sig.set_xlabel(r'$\varepsilon_{11}$ [-]') ax_sig.set_ylabel(r'$\sigma_{11}$ [MPa]') ax_d_sig.set_ylabel( r'$\mathrm{d} \sigma_{11} / \mathrm{d} \varepsilon_{11}$ [MPa]') ax_d_sig.plot(eps11_range[:-1], (sig11_range[:-1] - sig11_range[1:]) / (eps11_range[:-1] - eps11_range[1:]), color='orange', linestyle='dashed')