示例#1
0
def build_tw():
    if not os.path.exists('output'):
        os.makedirs('output')

    TW = NetworkBuilder("TW")
    TW.add_nodes(N=3000, pop_name='TW', ei='e', location='TW', level_of_detail='filter')

    # Save cells.csv and cell_types.csv
    TW.save_nodes(nodes_file_name='output/tw_nodes.h5', node_types_file_name='output/tw_node_types.csv')

    VL4 = NetworkBuilder('V1/L4')
    VL4.import_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv')
    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'Rorb'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.00015, 'weight_function': 'wmax', 'distance_range': [30.0, 150.0],
                      'target_sections': ['basal', 'apical'], 'delay': 2.0, 'params_file': 'AMPA_ExcToExc.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'Scnn1a'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.00019, 'weight_function': 'wmax', 'distance_range': [30.0, 150.0],
                      'target_sections': ['basal', 'apical'], 'delay': 2.0, 'params_file': 'AMPA_ExcToExc.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'Nr5a1'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.00019, 'weight_function': 'wmax', 'distance_range': [30.0, 150.0],
                      'target_sections': ['basal', 'apical'], 'delay': 2.0, 'params_file': 'AMPA_ExcToExc.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'PV1'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.0022, 'weight_function': 'wmax', 'distance_range': [0.0, 1.0e+20],
                      'target_sections': ['somatic', 'basal'], 'delay': 2.0, 'params_file': 'AMPA_ExcToInh.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'PV2'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.0013, 'weight_function': 'wmax', 'distance_range': [0.0, 1.0e+20],
                      'target_sections': ['somatic', 'basal'], 'delay': 2.0, 'params_file': 'AMPA_ExcToInh.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'LIF_exc'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.015, 'weight_function': 'wmax', 'delay': 2.0,
                      'params_file': 'instanteneousExc.json', 'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'LIF_inh'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.05, 'weight_function': 'wmax', 'delay': 2.0,
                      'params_file': 'instanteneousExc.json', 'set_params_function': 'exp2syn'}))

    VL4.build()
    VL4.save_edges(edges_file_name='output/tw_v1_edges.h5', edge_types_file_name='output/tw_v1_edge_types.csv')
示例#2
0
    lgn_net.add_nodes(model_params['N'],
                      position=positions,
                      tuning_angle=tuning_angles,
                      ei=model_params['ei'],
                      location=model_params['location'],
                      level_of_detail=model_params['level_of_detail'],
                      pop_name=model_params['pop_name'],
                      pop_id=model_params['pop_id'])

lgn_net.build()
lgn_net.save_nodes('lgn_nodes.h5', 'lgn_node_types.csv')
exit()

v1_net = NetworkBuilder('V1')
v1_net.import_nodes('v1_nodes.h5', 'v1_node_types.csv')

lgn_mean = (np.mean(xcoords), np.mean(ycoords))
lgn_dim = (140.0, 70.0)
print "> LGN mean center:"

# Determine the mean center of the CC cells
xcoords = [n['position'][0] for n in v1_net.nodes()]
ycoords = [n['position'][1] for n in v1_net.nodes()]
zcoords = [n['position'][2] for n in v1_net.nodes()]
l4_mean = (np.mean(xcoords), np.mean(ycoords), np.mean(zcoords))
l4_dim = (max(xcoords) - min(xcoords), max(ycoords) - min(ycoords),
          max(zcoords) - min(zcoords))
print "> L4 mean center:", str(l4_mean)

cparams = {
示例#3
0
def build_ext5_nodes():
    if not os.path.exists('network'):
        os.makedirs('network')

    EXT = NetworkBuilder("EXT")
    # need 5 cells to stimulate at 5 different frequencies
    EXT.add_nodes(N=5,
                  pop_name='EXT',
                  model_type='virtual',
                  firing_rate=firing_rate)

    # Save cells.csv and cell_types.csv
    EXT.save_nodes(nodes_file_name='network/ext_nodes.h5',
                   node_types_file_name='network/ext_node_types.csv')

    net = NetworkBuilder('slice')
    net.import_nodes(nodes_file_name='network/slice_nodes.h5',
                     node_types_file_name='network/slice_node_types.csv')

    net.add_edges(source=EXT.nodes(firing_rate=10),
                  target=net.nodes(firing_rate=10, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=20),
                  target=net.nodes(firing_rate=20, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=50),
                  target=net.nodes(firing_rate=50, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=100),
                  target=net.nodes(firing_rate=100, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=200),
                  target=net.nodes(firing_rate=200, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=10),
                  target=net.nodes(firing_rate=10, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=20),
                  target=net.nodes(firing_rate=20, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=50),
                  target=net.nodes(firing_rate=50, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=100),
                  target=net.nodes(firing_rate=100, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=200),
                  target=net.nodes(firing_rate=200, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.build()
    net.save_edges(edges_file_name='network/ext_to_slice_edges.h5',
                   edge_types_file_name='network/ext_to_slice_edge_types.csv')
示例#4
0
#print np.random.geometric(p=0.5)
#print np.sqrt(1-0.005)/0.005
"""
def connect_random(source, target, nsyn_min=0, nsyn_max=10, distribution=None):
    return np.random.randint(nsyn_min, nsyn_max)
"""

thalamus = NetworkBuilder('mthalamus')
thalamus.add_nodes(N=100,
                   pop_name='tON',
                   potential='exc',
                   level_of_detail='filter')

cortex = NetworkBuilder('mcortex')
cortex.import_nodes(nodes_file_name='network/mcortex_nodes.h5',
                    node_types_file_name='network/mcortex_node_types.csv')
thalamus.add_edges(source=thalamus.nodes(),
                   target=cortex.nodes(),
                   connection_rule=connect_random,
                   connection_params={
                       'nsyn_min': 0,
                       'nsyn_max': 12
                   },
                   syn_weight=1.0e-04,
                   distance_range=[0.0, 150.0],
                   target_sections=['basal', 'apical'],
                   delay=2.0,
                   dynamics_params='AMPA_ExcToExc.json',
                   model_template='exp2syn')

thalamus.build()
示例#5
0
import numpy as np

from bmtk.builder.networks import NetworkBuilder

lgn = NetworkBuilder('LGN')
lgn.add_nodes(N=500, pop_name='tON', potential='exc', level_of_detail='filter')

v1 = NetworkBuilder('V1')
v1.import_nodes(nodes_file_name='network/V1_nodes.h5',
                node_types_file_name='network/V1_node_types.csv')


def select_source_cells(sources,
                        target,
                        nsources_min=10,
                        nsources_max=30,
                        nsyns_min=3,
                        nsyns_max=12):
    total_sources = len(sources)
    nsources = np.random.randint(nsources_min, nsources_max)
    selected_sources = np.random.choice(total_sources, nsources, replace=False)
    syns = np.zeros(total_sources)
    syns[selected_sources] = np.random.randint(nsyns_min,
                                               nsyns_max,
                                               size=nsources)
    return syns


lgn.add_edges(source=lgn.nodes(),
              target=net.nodes(pop_name='Scnn1a'),
              iterator='all_to_one',
示例#6
0
def build_lgn():
    def generate_positions(N, x0=0.0, x1=300.0, y0=0.0, y1=100.0):
        X = np.random.uniform(x0, x1, N)
        Y = np.random.uniform(y0, y1, N)
        return np.column_stack((X, Y))

    def select_source_cells(src_cell, trg_cell, n_syns_exc, n_syns_inh):
        #if trg_cell['tuning_angle'] is not None:
        #    synapses = [n_syns if src['pop_name'] == 'tON' or src['pop_name'] == 'tOFF' else 0 for src in src_cells]
        #else:
        #    synapses = [n_syns if src['pop_name'] == 'tONOFF' else 0 for src in src_cells]

        # will always give synapse number depending on type
        if n_syns_exc > 0:
            n_synapses = n_syns_exc
        if n_syns_inh > 0:
            n_synapses = n_syns_inh

        return n_synapses

        # varible number of synapses
        #return np.random.randint(n_syns_min, n_syns_max)
        #return synapses

    if not os.path.exists('output'):
        os.makedirs('output')

    LGN = NetworkBuilder("LGN")
    LGN.add_nodes(N=1000,
                  positions=generate_positions(1000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='ExcIN',
                  ei='e')

    LGN.add_nodes(N=1,
                  positions=generate_positions(1),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='InhIN',
                  ei='i')
  


    VL4 = NetworkBuilder('V1/L4')
    VL4.import_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv')
    cm = VL4.add_edges(source=LGN.nodes(ei='e'), #target={'pop_name': 'DG_GC'},
                  connection_rule=select_source_cells,
                  connection_params={'n_syns_exc': 1, 'n_syns_inh': 0},
                  weight_max=10e-03,
                  weight_function='wmax',
                  distance_range=[1, 1e+20],
                  target_sections=['apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')



    VL4.build()
    LGN.save_nodes(nodes_file_name='output/lgn_nodes.h5', node_types_file_name='output/lgn_node_types.csv')
    VL4.save_edges(edges_file_name='output/lgn_v1_edges.h5', edge_types_file_name='output/lgn_v1_edge_types.csv')
示例#7
0
def build_lgn():
    def generate_positions(N, x0=0.0, x1=300.0, y0=0.0, y1=100.0):
        X = np.random.uniform(x0, x1, N)
        Y = np.random.uniform(y0, y1, N)
        return np.column_stack((X, Y))

    def select_source_cells(src_cells, trg_cell, n_syns):
        if trg_cell['tuning_angle'] is not None:
            synapses = [n_syns if src['pop_name'] == 'tON' or src['pop_name'] == 'tOFF' else 0 for src in src_cells]
        else:
            synapses = [n_syns if src['pop_name'] == 'tONOFF' else 0 for src in src_cells]

        return synapses

    if not os.path.exists('output'):
        os.makedirs('output')

    LGN = NetworkBuilder("LGN")
    LGN.add_nodes(N=3000,
                  positions=generate_positions(3000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='tON',
                  ei='e')

    LGN.add_nodes(N=3000,
                  positions=generate_positions(3000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='tOFF',
                  ei='e')

    LGN.add_nodes(N=3000,
                  positions=generate_positions(3000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='tONOFF',
                  ei='e')

    VL4 = NetworkBuilder('V1/L4')
    VL4.import_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv')
    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'Rorb'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=5e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'Nr5a1'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=5e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'Scnn1a'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=4e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'PV1'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=0.0001,
                  weight_function='wmax',
                  distance_range=[0.0, 1.0e+20],
                  target_sections=['somatic', 'basal'],
                  delay=2.0,
                  params_file='AMPA_ExcToInh.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'PV2'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=9e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 1.0e+20],
                  target_sections=['somatic', 'basal'],
                  delay=2.0,
                  params_file='AMPA_ExcToInh.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'LIF_exc'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=0.0045,
                  weight_function='wmax',
                  delay=2.0,
                  params_file='instanteneousExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'LIF_inh'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=0.002,
                  weight_function='wmax',
                  delay=2.0,
                  params_file='instanteneousExc.json',
                  set_params_function='exp2syn')

    VL4.build()
    LGN.save_nodes(nodes_file_name='output/lgn_nodes.h5', node_types_file_name='output/lgn_node_types.csv')
    VL4.save_edges(edges_file_name='output/lgn_v1_edges.h5', edge_types_file_name='output/lgn_v1_edge_types.csv')

    assert(os.path.exists('output/lgn_node_types.csv'))
    node_types_csv = pd.read_csv('output/lgn_node_types.csv', sep=' ')
    assert(len(node_types_csv) == 3)
    assert(set(node_types_csv.columns) == {'node_type_id', 'location', 'ei', 'level_of_detail', 'pop_name'})


    assert(os.path.exists('output/lgn_nodes.h5'))
    nodes_h5 = h5py.File('output/lgn_nodes.h5')
    assert(len(nodes_h5['/nodes/node_gid']) == 9000)
    assert(len(nodes_h5['/nodes/node_type_id']) == 9000)
    assert(len(nodes_h5['/nodes/node_group']) == 9000)
    assert(len(nodes_h5['/nodes/node_group_index']) == 9000)
    assert(set(nodes_h5['/nodes/0'].keys()) == {'positions'})
    assert(len(nodes_h5['/nodes/0/positions']) == 9000)

    assert(os.path.exists('output/lgn_v1_edge_types.csv'))
    edge_types_csv = pd.read_csv('output/lgn_v1_edge_types.csv', sep=' ')
    assert(len(edge_types_csv) == 7)
    assert(set(edge_types_csv.columns) == {'weight_max', 'edge_type_id', 'target_query', 'params_file',
                                           'set_params_function', 'delay', 'target_sections', 'weight_function',
                                           'source_query', 'distance_range'})

    assert(os.path.exists('output/lgn_v1_edges.h5'))
    edges_h5 = h5py.File('output/lgn_v1_edges.h5')
    assert(len(edges_h5['/edges/index_pointer']) == 14+1)
    assert(len(edges_h5['/edges/target_gid']) == 6000*14)
    assert(len(edges_h5['/edges/source_gid']) == 6000*14)
    assert(len(edges_h5['/edges/0/nsyns']) == 6000*14)