示例#1
0
def test_psg_fixed():
    psg = PoissonSpikeGenerator(population='test', seed=100)
    psg.add(node_ids=range(10), firing_rate=5.0, times=(0.0, 3.0))
    assert (psg.populations == ['test'])
    assert (np.all(psg.node_ids() == list(range(10))))
    assert (psg.n_spikes() == 143)
    assert (psg.n_spikes(population='test') == 143)
    assert (np.allclose(psg.time_range(),
                        (5.380662350673328, 2986.5205688893295)))

    df = psg.to_dataframe()
    assert (df.shape == (143, 3))

    assert (np.allclose(psg.get_times(node_id=0), [
        156.7916, 222.0400, 332.5493, 705.1267, 706.0727, 731.9963, 954.1834,
        1303.7542, 1333.1543, 1504.3314, 1948.2045, 1995.1471, 2036.1411,
        2059.0835, 2108.6982, 2877.7935
    ],
                        atol=1.0e-3))

    assert (np.allclose(psg.get_times(node_id=9, population='test'), [
        23.3176, 241.7332, 390.1951, 428.2215, 1001.0229, 1056.4003, 2424.8442,
        2599.6312, 2640.1228, 2737.9504, 2780.0140, 2885.8020
    ],
                        atol=1.0e-3))
示例#2
0
    def _activate_hln(self, sim, block_interval, firing_rate):
        next_block_tstart = (block_interval[1] + 1) * sim.dt  # The next time-step
        next_block_tstop = next_block_tstart + sim.nsteps_block*sim.dt  # The time-step when the next block ends

        # This is where you can use the firing-rate of the low-level neurons to generate a set of spike times for the
        # next block
        if firing_rate != 0.0:
            psg = PoissonSpikeGenerator()
            psg.add(node_ids=[0], firing_rate=firing_rate, times=(next_block_tstart/1000.0, next_block_tstop/1000.0))
            if psg.n_spikes() <= 0:
                io.log_info('     _activate_hln: firing rate {} did not produce any spikes'.format(firing_rate))
            else:
                self._spike_events = psg.get_times(0)
                # Update firing rate of bladder afferent neurons
                for gid in self._high_level_neurons:
                    nc = self._netcons[gid]
                    for t in self._spike_events:
                        nc.event(t)
        else:
            io.log_info('     _activate_hln: firing rate 0')

        # If pressure is maxxed, update firing rate of EUS motor neurons 
        # Guarding reflex
        # press_change = self._prev_glob_press - self._glob_press
        # if self._glob_press > press_thres or press_change > change_thres:
            # psg = PoissonSpikeGenerator()
            # eus_fr = self._glob_press*10 + press_change*10 # Assumption: guarding reflex
                                                           # # depends on current pressure
                                                           # # and change from last pressure
            # psg.add(node_ids=[0], firing_rate=eus_fr, times=(next_block_tstart, next_block_tstop))
            # self._spike_events = psg.get_times(0)
            # for gid in self._eus_neurons:
                # nc = self._netcons[gid]
                # for t in self._spike_events:
                    # nc.event(t)
################ Activate higher order based on pressure threshold ##############################

        # if block_interval[1] % 2000 == 1000:  # For fast testing, only add events to every other block
        # if False:  # For testing
        if self._glob_press > self.press_thres:
            io.log_info('      updating pag input')
            psg = PoissonSpikeGenerator()
            print(self.press_thres)

            pag_fr = self.press_thres #change
            psg.add(node_ids=[0], firing_rate=pag_fr, times=(next_block_tstart/1000.0, next_block_tstop/1000.0))
            if psg.n_spikes() <= 0:
                io.log_info('     no psg spikes generated by Poisson distritubtion')
            self._spike_events = psg.get_times(0)
            for gid in self._pag_neurons:
                nc = self._netcons[gid]
                for t in self._spike_events:
                    nc.event(t)
示例#3
0
def test_psg_fixed():
    psg = PoissonSpikeGenerator(population='test', seed=100)
    psg.add(node_ids=range(10), firing_rate=5.0, times=(0.0, 3.0))
    assert (psg.populations == ['test'])
    assert (np.all(psg.node_ids() == list(range(10))))
    assert (psg.n_spikes() == 143)
    assert (psg.n_spikes(population='test') == 143)
    assert (np.allclose(psg.time_range(),
                        (0.005380662350673328, 2.9865205688893295)))

    df = psg.to_dataframe()
    assert (df.shape == (143, 3))

    assert (np.allclose(psg.get_times(node_id=0), [
        0.156, 0.222, 0.332, 0.705, 0.706, 0.731, 0.954, 1.303, 1.333, 1.504,
        1.948, 1.995, 2.036, 2.059, 2.108, 2.877
    ],
                        atol=1.0e-3))
    assert (np.allclose(psg.get_times(node_id=9, population='test'), [
        0.0233, 0.241, 0.390, 0.428, 1.001, 1.056, 2.424, 2.599, 2.640, 2.737,
        2.780, 2.885
    ],
                        atol=1.0e-3))
示例#4
0
def test_psg_variable():
    times = np.linspace(0.0, 3.0, 1000)
    fr = np.exp(-np.power(times - 1.0, 2) / (2 * np.power(.5, 2))) * 5

    psg = PoissonSpikeGenerator(population='test', seed=0.0)
    psg.add(node_ids=range(10), firing_rate=fr, times=times)

    assert (psg.populations == ['test'])
    assert (np.all(psg.node_ids() == list(range(10))))
    assert (psg.n_spikes() == 59)
    assert (np.allclose(psg.time_range(),
                        (0.13932107933711294, 2.9013003727909172)))
    assert (psg.to_dataframe().shape == (59, 3))
    assert (np.allclose(psg.get_times(node_id=0),
                        [0.442, 0.520, 0.640, 1.099, 1.393, 1.725],
                        atol=1.0e-3))
    assert (np.allclose(psg.get_times(node_id=9),
                        [0.729, 0.885, 1.047, 1.276, 1.543, 1.669, 1.881],
                        atol=1.0e-3))
示例#5
0
def test_psg_variable():
    times = np.linspace(0.0, 3.0, 1000)
    fr = np.exp(-np.power(times - 1.0, 2) / (2 * np.power(.5, 2))) * 5

    psg = PoissonSpikeGenerator(population='test', seed=0.0)
    psg.add(node_ids=range(10), firing_rate=fr, times=times)

    assert (psg.populations == ['test'])
    assert (np.all(psg.node_ids() == list(range(10))))
    assert (psg.n_spikes() == 59)
    assert (np.allclose(psg.time_range(),
                        (139.32107933711294, 2901.3003727909172)))
    assert (psg.to_dataframe().shape == (59, 3))
    assert (np.allclose(
        psg.get_times(node_id=0),
        [442.8378, 520.3624, 640.3880, 1099.0661, 1393.0794, 1725.6109],
        atol=1.0e-3))
    assert (np.allclose(psg.get_times(node_id=9), [
        729.6267, 885.2469, 1047.7728, 1276.3554, 1543.6557, 1669.9070,
        1881.3605
    ],
                        atol=1.0e-3))
#                                ('shock', './12_cell_inputs/shock_spikes.csv'),
#                                ('bg_pn', '12_cell_inputs/bg_pn_spikes.h5'),
#                                ('bg_pv', '12_cell_inputs/bg_pv_spikes.h5'),
#                                ('bg_olm', '12_cell_inputs/bg_olm_spikes.h5')],
#                 components_dir='biophys_components',
#                 config_file='config.json',
#                 compile_mechanisms=False)

psg = PoissonSpikeGenerator(population='bg_pn')
psg.add(
    node_ids=range(8),  # need same number as cells
    firing_rate=1,  # 1 spike every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('12_cell_inputs/bg_pn_spikes.h5')

print('Number of background spikes for pn: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_pv')
psg.add(
    node_ids=range(2),  # need same number as cells
    firing_rate=8,  # 8 spikes every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('12_cell_inputs/bg_pv_spikes.h5')

print('Number of background spikes for pv: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_olm')
psg.add(
    node_ids=range(2),  # need same number as cells
    firing_rate=2,  # 8 spikes every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
示例#7
0
# SPIKE TRAINS
t_sim = 40000

#build_env_bionet(base_dir='./',
#                 network_dir='./network',
#                 tstop=t_sim, dt=0.1,
#                 report_vars=['v'],
#                 components_dir='biophys_components',
#                 config_file='config.json',
#                 spikes_inputs=[('bg_pn_c', '2_cell_inputs/bg_pn_c_spikes.h5'),
#                                ('bg_pv', '2_cell_inputs/bg_pv_spikes.h5')],
#                 compile_mechanisms=False)

psg = PoissonSpikeGenerator(population='bg_pn_c')
psg.add(
    node_ids=range(1),  # need same number as cells
    firing_rate=6,  # 1 spike every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('2_cell_inputs/bg_pn_c_spikes.h5')

print('Number of background spikes for PN_C: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_pv')
psg.add(
    node_ids=range(1),  # need same number as cells
    firing_rate=7.7,  # 8 spikes every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('2_cell_inputs/bg_pv_spikes.h5')

print('Number of background spikes for PV: {}'.format(psg.n_spikes()))
                   distance_range=[0.0, 150.0],
                   dynamics_params='AMPA_ExcToExc.json',
                   model_template='exp2syn')

net.build()
net.save(output_dir='network')
thalamus.build()
thalamus.save(output_dir='network')

psg = PoissonSpikeGenerator(population='mthalamus')
psg.add(
    node_ids=1,  # Have 5 nodes to match mthalamus
    firing_rate=8,  # 2 Hz
    times=(0.0, 1))  # time is in seconds for some reason
psg.to_sonata('virtual_spikes.h5')
print('Number of background spikes: {}'.format(psg.n_spikes()))

from bmtk.utils.sim_setup import build_env_bionet
build_env_bionet(
    base_dir='../',
    network_dir='./network',
    tstop=1000.0,
    dt=0.1,
    report_vars=['v'],
    spikes_inputs=[('mthalamus', 'virtual_spikes.h5')],
    #current_clamp={
    #    'amp': -0.100,
    #    'delay': 250.0,
    #    'duration': 200 #200 for bask 600 for pyr
    #},
    components_dir='../biophys_components',
示例#9
0
def build_model():
    if os.path.isdir('network'):
        shutil.rmtree('network')
    if os.path.isdir('2_cell_inputs'):
        shutil.rmtree('2_cell_inputs')

    seed = 967
    random.seed(seed)
    np.random.seed(seed)
    load()
    syn = syn_params_dicts()

    # Initialize our network

    net = NetworkBuilder("biophysical")

    num_inh = [1]

    num_exc = [1]

    ##################################################################################
    ###################################BIOPHY#########################################

    # PN
    net.add_nodes(N=1,
                  pop_name='PyrC',
                  mem_potential='e',
                  model_type='biophysical',
                  model_template='hoc:Cell_C',
                  morphology=None)

    # PV
    net.add_nodes(N=1,
                  pop_name="PV",
                  mem_potential='e',
                  model_type='biophysical',
                  model_template='hoc:basket',
                  morphology=None)

    backgroundPN_C = NetworkBuilder('bg_pn_c')
    backgroundPN_C.add_nodes(N=1,
                             pop_name='tON',
                             potential='exc',
                             model_type='virtual')

    backgroundPV = NetworkBuilder('bg_pv')
    backgroundPV.add_nodes(N=2,
                           pop_name='tON',
                           potential='exc',
                           model_type='virtual')

    # if neuron is sufficiently depolorized enough post synaptic calcium then synaptiic weight goes up

    # pyr->pyr & pyr->PV
    # PV->pyr PV->PV
    def one_to_all(source, target):
        sid = source.node_id
        tid = target.node_id
        print("connecting bio cell {} to bio cell {}".format(sid, tid))
        return 1

    def BG_to_PN_C(source, target):
        sid = source.node_id
        tid = target.node_id
        if sid == tid:
            print("connecting BG {} to PN_C{}".format(sid, tid))
            return 1
        else:
            return 0

    def BG_to_PV(source, target):
        sid = source.node_id
        tid = target.node_id
        sid = sid + 1
        if sid == tid:
            print("connecting BG {} to PV{}".format(sid, tid))
            return 1
        else:
            return 0

    conn = net.add_edges(source=net.nodes(pop_name='PyrC'),
                         target=net.nodes(pop_name="PV"),
                         connection_rule=one_to_all,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='PN2PV.json',
                         model_template=syn['PN2PV.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(1, 0.9),
                        dtypes=[np.int32, np.float])

    conn = net.add_edges(source=net.nodes(pop_name='PV'),
                         target=net.nodes(pop_name="PyrC"),
                         connection_rule=one_to_all,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='PV2PN.json',
                         model_template=syn['PV2PN.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(1, 0.9),
                        dtypes=[np.int32, np.float])

    conn = net.add_edges(source=backgroundPN_C.nodes(),
                         target=net.nodes(pop_name='PyrC'),
                         connection_rule=BG_to_PN_C,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='BG2PNC.json',
                         model_template=syn['BG2PNC.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(2, 0.9),
                        dtypes=[np.int32,
                                np.float])  # places syn on apic at 0.9

    conn = net.add_edges(source=backgroundPV.nodes(),
                         target=net.nodes(pop_name='PV'),
                         connection_rule=BG_to_PV,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='BG2PV.json',
                         model_template=syn['BG2PV.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(1, 0.9),
                        dtypes=[np.int32, np.float])

    backgroundPN_C.build()
    backgroundPN_C.save_nodes(output_dir='network')

    backgroundPV.build()
    backgroundPV.save_nodes(output_dir='network')

    net.build()
    net.save(output_dir='network')
    # SPIKE TRAINS
    t_sim = 40000

    # build_env_bionet(base_dir='./',
    #                 network_dir='./network',
    #                 tstop=t_sim, dt=0.1,
    #                 report_vars=['v'],
    #                 components_dir='biophys_components',
    #                 config_file='config.json',
    #                 spikes_inputs=[('bg_pn_c', '2_cell_inputs/bg_pn_c_spikes.h5'),
    #                                ('bg_pv', '2_cell_inputs/bg_pv_spikes.h5')],
    #                 compile_mechanisms=False)

    psg = PoissonSpikeGenerator(population='bg_pn_c')
    psg.add(
        node_ids=range(1),  # need same number as cells
        firing_rate=6,  # 1 spike every 1 second Hz
        times=(0.0, t_sim / 1000))  # time is in seconds for some reason
    psg.to_sonata('2_cell_inputs/bg_pn_c_spikes.h5')

    print('Number of background spikes for PN_C: {}'.format(psg.n_spikes()))

    psg = PoissonSpikeGenerator(population='bg_pv')
    psg.add(
        node_ids=range(1),  # need same number as cells
        firing_rate=7.7,  # 8 spikes every 1 second Hz
        times=(0.0, t_sim / 1000))  # time is in seconds for some reason
    psg.to_sonata('2_cell_inputs/bg_pv_spikes.h5')

    print('Number of background spikes for PV: {}'.format(psg.n_spikes()))