# %% Import packages from bnn_mcmc_examples.datasets import load_xydataset_from_file from bnn_mcmc_examples.datasets.noisy_xor.data1.constants import test_data_path, training_data_path from bnn_mcmc_examples.examples.mlp.noisy_xor.setting1.constants import dtype # %% Load training dataloader training_dataset, training_dataloader = load_xydataset_from_file( training_data_path, dtype=dtype) # %% Load test dataloader test_dataset, test_dataloader = load_xydataset_from_file(test_data_path, dtype=dtype)
# %% Import packages from bnn_mcmc_examples.datasets import load_xydataset_from_file from bnn_mcmc_examples.datasets.noisy_xor.data2.constants import test_data_path, training_data_path from bnn_mcmc_examples.examples.mlp.noisy_xor.setting3.constants import dtype, batch_size, shuffle # %% Load training dataloader training_dataset, training_dataloader = load_xydataset_from_file( training_data_path, dtype=dtype, batch_size=batch_size, shuffle=shuffle ) # %% Load test dataloader test_dataset, test_dataloader = load_xydataset_from_file(test_data_path, dtype=dtype)
# %% Import packages import matplotlib.pyplot as plt import numpy as np from bnn_mcmc_examples.datasets import load_xydataset_from_file from bnn_mcmc_examples.datasets.noisy_xor.data1.constants import num_classes, num_test_samples, test_data_path, output_path # %% Load data dataset, _ = load_xydataset_from_file(test_data_path) # %% Create output directory if it does not exist output_path.mkdir(parents=True, exist_ok=True) # %% Plot noisy XOR points num_test_samples_cumsum = np.hstack((0, num_test_samples)).cumsum() # print(plt.rcParams['axes.prop_cycle'].by_key()['color']) cols = ['#1f77b4', '#ff7f0e', '#d62728', '#e377c2'] labels = ['(0, 0)', '(0, 1)', '(1, 0)', '(1, 1)'] plt.figure(figsize=[6.4, 6.4]) plt.rcParams['axes.labelsize'] = 14 plt.rcParams['axes.titlesize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12
# %% Import packages import matplotlib.pyplot as plt import numpy as np from bnn_mcmc_examples.datasets import load_xydataset_from_file from bnn_mcmc_examples.datasets.noisy_xor.data2.constants import ( num_classes, num_training_samples, training_data_path, output_path) # %% Load data dataset, _ = load_xydataset_from_file(training_data_path) # %% Create output directory if it does not exist output_path.mkdir(parents=True, exist_ok=True) # %% Plot noisy XOR points num_training_samples_cumsum = np.hstack((0, num_training_samples)).cumsum() # print(plt.rcParams['axes.prop_cycle'].by_key()['color']) cols = ['#1f77b4', '#ff7f0e', '#d62728', '#e377c2'] labels = ['(0, 0)', '(0, 1)', '(1, 0)', '(1, 1)'] plt.figure(figsize=[6.4, 6.4]) plt.rcParams['axes.labelsize'] = 14 plt.rcParams['axes.titlesize'] = 14 plt.rcParams['xtick.labelsize'] = 12
# %% Import packages from bnn_mcmc_examples.datasets import load_xydataset_from_file from bnn_mcmc_examples.datasets.noisy_xor.data1.constants import test_data_path from bnn_mcmc_examples.examples.mlp.noisy_xor.setting1.constants import dtype # %% Load test dataloader with batch size of 1 test_dataset, test_dataloader = load_xydataset_from_file(test_data_path, dtype=dtype, batch_size=1)