示例#1
0
def plotDocUsageForProposal(docUsageByUID, savefilename=None, **kwargs):
    ''' Make trace plot of doc usage for each component.
    '''
    pylab.figure()
    L = 0
    maxVal = 0
    for k, uid in enumerate(docUsageByUID):
        ys = np.asarray(docUsageByUID[uid])
        xs = np.arange(0, ys.size)
        if k < 6: # only a few labels fit well on a legend
            pylab.plot(xs, ys, label=uid)
        else:
            pylab.plot(xs, ys)
        L = np.maximum(L, ys.size)
        maxVal = np.maximum(maxVal, ys.max())
    # Use big chunk of left-hand side of plot for legend display
    xlims = np.asarray([-0.75*L, L-0.5])
    pylab.xlim(xlims)
    pylab.xticks(np.arange(1, L))
    pylab.ylim([0, 1.1*maxVal])
    pylab.xlabel('num proposal steps')
    pylab.ylabel('num docs using each comp')
    pylab.legend(loc='upper left', fontsize=12)
    pylab.subplots_adjust(left=0.2)
    if savefilename is not None:
        pylab.savefig(savefilename, pad_inches=0)
        pylab.close('all')
示例#2
0
def makePlot(muVals=[(0.01,0), (0.1,0), (1,0), (10,0)], doCorrection=1):
    pylab.figure()
    xgrid = np.linspace(-8, 8, 2000)
    pylab.hold('on')
    pylab.plot(xgrid, np.zeros_like(xgrid), ':', alpha=0.2)
    for mu1, mu2 in muVals:
        ygrid = calcBregDiv_Gauss1D(xgrid, mu1, mu2, doCorrection=doCorrection)
        print ygrid.min()
        pylab.plot(xgrid, ygrid, label='mu1=% 6.2f mu2=% 6.2f' % (mu1, mu2))
    pylab.legend(loc='lower right')
    pylab.xlim([xgrid.min(), xgrid.max()])
    pylab.ylim([xgrid.min(), xgrid.max()])
    pylab.xlabel('x')
    if doCorrection:
        pylab.ylabel('D(x, \mu) + correction')
    else:
        pylab.ylabel('D(x, \mu)')
示例#3
0
def makePlot(muVals=[0.01, 0.1, 1, 10], B=1e-10, nu=2, justMahalTerm=0):
    pylab.figure()
    xgrid = np.linspace(0, 8, 2000)
    pylab.hold('on')
    for mu in muVals:
        ygrid = calcBregDiv_ZeroMean(xgrid,
                                     mu,
                                     B=B,
                                     nu=nu,
                                     justMahalTerm=justMahalTerm)
        pylab.plot(xgrid, ygrid, linewidth=2, label='\mu=%6.2f' % (mu))
    pylab.legend(loc='upper right')
    pylab.xlim([-0.1, xgrid.max()])
    pylab.ylim([-0.1, xgrid.max()])
    pylab.xlabel('x')
    pylab.ylabel('D(x, \mu)')
    pylab.title('B=%s  nu=%s' % (str(B), str(nu)))
示例#4
0
def plotJobs(jpaths,
             legNames,
             styles=None,
             density=2,
             xvar='laps',
             yvar='evidence',
             loc='upper right',
             xmin=None,
             xmax=None,
             taskids=None,
             savefilename=None,
             tickfontsize=None,
             bbox_to_anchor=None,
             **kwargs):
    ''' Create line plots for provided jobs.
    '''
    nLines = len(jpaths)
    if nLines == 0:
        raise ValueError('Empty job list. Nothing to plot.')

    nLeg = len(legNames)

    for lineID in range(nLines):
        if styles is None:
            curStyle = dict(colorID=lineID)
        else:
            curStyle = styles[lineID]

        task_kwargs = dict(**kwargs)
        task_kwargs.update(curStyle)
        plot_all_tasks_for_job(jpaths[lineID],
                               legNames[lineID],
                               xvar=xvar,
                               yvar=yvar,
                               taskids=taskids,
                               density=density,
                               **task_kwargs)

    # Y-axis limit determination
    # If we have "enough" data about the run beyond two full passes of dataset,
    # we zoom in on the region of data beyond lap 2
    if xvar == 'laps' and yvar == 'evidence':
        xmax = 0
        ymin = np.inf
        ymin2 = np.inf
        ymax = -np.inf
        allRunsHaveXBeyond1 = True
        for line in pylab.gca().get_lines():
            xd = line.get_xdata()
            yd = line.get_ydata()
            if xd.size < 3:
                allRunsHaveXBeyond1 = False
                continue
            posLap1 = np.searchsorted(xd, 1.0)
            posLap2 = np.searchsorted(xd, 2.0)
            if posLap1 < xd.size:
                ymin = np.minimum(ymin, yd[posLap1])
                ymax = np.maximum(ymax, yd[posLap1:].max())
            if posLap2 < xd.size:
                ymin2 = np.minimum(ymin2, yd[posLap2])
            xmax = np.maximum(xmax, xd.max())
            if xd.max() <= 1:
                allRunsHaveXBeyond1 = False
        if allRunsHaveXBeyond1 and xmax > 1.5:
            # If all relevant curves extend beyond x=1, only show that part
            xmin = 1.0 - 1e-5
        else:
            xmin = 0
        if allRunsHaveXBeyond1 and ymin2 < ymax:
            range1 = ymax - ymin
            range2 = ymax - ymin2
            if 10 * range2 < range1:
                # Y values jump from lap1 to lap2 is enormous,
                # so let's just show y values from lap2 onward...
                ymin = ymin2
        if (not np.allclose(ymax, ymin)) and allRunsHaveXBeyond1:
            pylab.ylim([ymin, ymax + 0.1 * (ymax - ymin)])
        pylab.xlim([xmin, xmax + .05 * (xmax - xmin)])

    if loc is not None and len(jpaths) > 1:
        pylab.legend(loc=loc, bbox_to_anchor=bbox_to_anchor)
    if tickfontsize is not None:
        pylab.tick_params(axis='both', which='major', labelsize=tickfontsize)

    if savefilename is not None:
        try:
            pylab.show(block=False)
        except TypeError:
            pass  # when using IPython notebook
        pylab.savefig(savefilename, bbox_inches='tight', pad_inches=0)
    else:
        try:
            pylab.show(block=True)
        except TypeError:
            pass  # when using IPython notebook