示例#1
0
def Chord(data,
          source=None,
          target=None,
          value=None,
          square_matrix=False,
          label=None,
          **kws):
    """ Create a chord chart using :class:`ChordBuilder <bokeh.charts.builders.chord_builder.ChordBuilder>`
    to render a chord graph from a variety of value forms.

    This chart displays the inter-relationships between data in a matrix.

    The data can be generated by the chart interface. Given a source

    Reference: `Chord diagram on Wikipedia <https://en.wikipedia.org/wiki/Chord_diagram>`_

    Args:
        data (:ref:`userguide_charts_data_types`): the data source for the chart.
        source (list(str) or str, optional): Data source to use as origin of the connection to a destination.
        target (list(str) or str, optional): Data source to use as destination of a connection.
        value (list(num) or num, optional): The value the connection should have.
        square_matrix (bool, optional): If square matrix, avoid any calculations during the setup.
        label (list(str or num) optional): The labels to be put in the areas.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the chord

    Examples:

    .. bokeh-plot::
        :source-position: above

            import pandas as pd
            from bokeh.charts import output_file, Chord
            from bokeh.io import show
            from bokeh.sampledata.les_mis import data

            nodes = data['nodes']
            links = data['links']

            nodes_df = pd.DataFrame(nodes)
            links_df = pd.DataFrame(links)

            source_data = links_df.merge(nodes_df, how='left', left_on='source', right_index=True)
            source_data = source_data.merge(nodes_df, how='left', left_on='target', right_index=True)
            source_data = source_data[source_data["value"] > 5]

            chord_from_df = Chord(source_data, source="name_x", target="name_y", value="value")
            output_file('chord_from_df.html', mode="inline")
            show(chord_from_df)

    """

    kws["origin"] = source
    kws["destination"] = target
    kws["value"] = value
    kws["square_matrix"] = square_matrix
    kws["label"] = label

    return create_and_build(ChordBuilder, data, **kws)
def Scatter(data=None, x=None, y=None, **kws):
    """ Create a scatter chart using :class:`ScatterBuilder <bokeh.charts.builders.scatter_builder.ScatterBuilder>`
    to render the geometry from values.

    Args:
        data (:ref:`userguide_charts_data_types`): table-like data
        x (str or list(str), optional): the column label to use for the x dimension
        y (str or list(str), optional): the column label to use for the y dimension

    In addition to the parameters specific to this chart,
    :ref:`userguide_charts_defaults` are also accepted as keyword parameters.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the scatter points

    Examples:

    .. bokeh-plot::
        :source-position: above

        from bokeh.sampledata.autompg import autompg as df
        from bokeh.charts import Scatter, output_file, show

        scatter = Scatter(df, x='mpg', y='hp', color='cyl', marker='origin',
                          title="Auto MPG", xlabel="Miles Per Gallon",
                          ylabel="Horsepower")

        output_file('scatter.html')
        show(scatter)

    """
    kws['x'] = x
    kws['y'] = y
    return create_and_build(ScatterBuilder, data, **kws)
示例#3
0
def Horizon(data=None, x=None, y=None, series=None, **kws):
    """ Create a scatter chart using :class:`ScatterBuilder <bokeh.charts.builders.scatter_builder.ScatterBuilder>`
    to render the geometry from values.

    Args:
        data (:ref:`userguide_charts_data_types`): table-like data
        x (str or list(str), optional): the column label to use for the x dimension
        y (str or list(str), optional): the column label to use for the y dimension

    In addition the the parameters specific to this chart,
    :ref:`userguide_charts_defaults` are also accepted as keyword parameters.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the scatter points

    Examples:

    .. bokeh-plot::
        :source-position: above

        from bokeh.sampledata.autompg import autompg as df
        from bokeh.charts import Scatter, output_file, show

        scatter = Scatter(df, x='mpg', y='hp', color='cyl', marker='origin',
                          title="Auto MPG", xlabel="Miles Per Gallon",
                          ylabel="Horsepower")

        output_file('scatter.html')
        show(scatter)

    """
    kws['x'] = x
    kws['y'] = y
    kws['series'] = series

    tools = kws.get('tools', True)
    if tools == True:
        tools = "save,resize,reset"
    elif isinstance(tools, string_types):
        tools = tools.replace('pan', '')
        tools = tools.replace('wheel_zoom', '')
        tools = tools.replace('box_zoom', '')
        tools = tools.replace(',,', ',')
    kws['tools'] = tools

    chart = create_and_build(HorizonBuilder, data, **kws)

    # Hide numerical axis
    chart.left[0].visible = False

    # Add the series names to the y axis
    chart.extra_y_ranges = {
        "series": FactorRange(factors=chart._builders[0].series_names)
    }
    chart.add_layout(CategoricalAxis(y_range_name="series"), 'left')
    return chart
示例#4
0
def Chord(data, source=None, target=None, value=None, square_matrix=False, label=None, **kws):
    """ Create a chord chart using :class:`ChordBuilder <bokeh.charts.builders.chord_builder.ChordBuilder>`
    to render a chord graph from a variety of value forms.

    This chart displays the inter-relationships between data in a matrix.

    The data can be generated by the chart interface. Given a source

    Reference: `Chord diagram on Wikipedia <https://en.wikipedia.org/wiki/Chord_diagram>`_

    Args:
        data (:ref:`userguide_charts_data_types`): the data source for the chart.
        source (list(str) or str, optional): Data source to use as origin of the connection to a destination.
        target (list(str) or str, optional): Data source to use as destination of a connection.
        value (list(num) or num, optional): The value the connection should have.
        square_matrix (bool, optional): If square matrix, avoid any calculations during the setup.
        label (list(str or num) optional): The labels to be put in the areas.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the chord

    Examples:

    .. bokeh-plot::
        :source-position: above

            import pandas as pd
            from bokeh.charts import output_file, Chord
            from bokeh.io import show
            from bokeh.sampledata.les_mis import data

            nodes = data['nodes']
            links = data['links']

            nodes_df = pd.DataFrame(nodes)
            links_df = pd.DataFrame(links)

            source_data = links_df.merge(nodes_df, how='left', left_on='source', right_index=True)
            source_data = source_data.merge(nodes_df, how='left', left_on='target', right_index=True)
            source_data = source_data[source_data["value"] > 5]

            chord_from_df = Chord(source_data, source="name_x", target="name_y", value="value")
            output_file('chord_from_df.html', mode="inline")
            show(chord_from_df)

    """

    kws["origin"] = source
    kws["destination"] = target
    kws["value"] = value
    kws["square_matrix"] = square_matrix
    kws["label"] = label

    return create_and_build(ChordBuilder, data, **kws)
示例#5
0
def Horizon(data=None, x=None, y=None, series=None, **kws):
    """ Create a scatter chart using :class:`ScatterBuilder <bokeh.charts.builders.scatter_builder.ScatterBuilder>`
    to render the geometry from values.

    Args:
        data (:ref:`userguide_charts_data_types`): table-like data
        x (str or list(str), optional): the column label to use for the x dimension
        y (str or list(str), optional): the column label to use for the y dimension

    In addition the the parameters specific to this chart,
    :ref:`userguide_charts_defaults` are also accepted as keyword parameters.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the scatter points

    Examples:

    .. bokeh-plot::
        :source-position: above

        from bokeh.sampledata.autompg import autompg as df
        from bokeh.charts import Scatter, output_file, show

        scatter = Scatter(df, x='mpg', y='hp', color='cyl', marker='origin',
                          title="Auto MPG", xlabel="Miles Per Gallon",
                          ylabel="Horsepower")

        output_file('scatter.html')
        show(scatter)

    """
    kws['x'] = x
    kws['y'] = y
    kws['series'] = series

    tools = kws.get('tools', True)
    if tools == True:
        tools = "save,resize,reset"
    elif isinstance(tools, string_types):
        tools = tools.replace('pan', '')
        tools = tools.replace('wheel_zoom', '')
        tools = tools.replace('box_zoom', '')
        tools = tools.replace(',,', ',')
    kws['tools'] = tools

    chart = create_and_build(HorizonBuilder, data, **kws)

    # Hide numerical axis
    chart.left[0].visible = False

    # Add the series names to the y axis
    chart.extra_y_ranges = {"series": FactorRange(factors=chart._builders[0].series_names)}
    chart.add_layout(CategoricalAxis(y_range_name="series"), 'left')
    return chart
示例#6
0
def Area(data=None, x=None, y=None, **kws):
    """ Create an area chart using :class:`AreaBuilder
    <bokeh.charts.builders.area_builder.AreaBuilder>` to render the
    geometry from values.

    Args:
        data (:ref:`userguide_charts_data_types`): table-like data
        x (str or list(str), optional): the column label to use for the x dimension
        y (str or list(str), optional): the column label to use for the y dimension

    In addition the the parameters specific to this chart,
    :ref:`userguide_charts_defaults` are also accepted as keyword parameters.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the area glyphs

    Examples:

    .. bokeh-plot::
        :source-position: above

        from bokeh.charts import Area, show, vplot, output_file

        # create some example data
        data = dict(
            python=[2, 3, 7, 5, 26, 221, 44, 233, 254, 265, 266, 267, 120, 111],
            pypy=[12, 33, 47, 15, 126, 121, 144, 233, 254, 225, 226, 267, 110, 130],
            jython=[22, 43, 10, 25, 26, 101, 114, 203, 194, 215, 201, 227, 139, 160],
        )

        area = Area(data, title="Area Chart", legend="top_left",
                    xlabel='time', ylabel='memory')

        output_file('area.html')
        show(area)

    """
    kws['x'] = x
    kws['y'] = y
    return create_and_build(AreaBuilder, data, **kws)
示例#7
0
def Horizon(data=None, x=None, y=None, series=None, **kws):
    """ Create a horizon chart using :class:`HorizonBuilder
    <bokeh.charts.builders.scatter_builder.HorizonBuilder>`
    to render the geometry from values.

    Args:
        data (:ref:`userguide_charts_data_types`): table-like data
        x (str or list(str), optional): the column label to use for the x dimension
        y (str or list(str), optional): the column label to use for the y dimension

    In addition to the parameters specific to this chart,
    :ref:`userguide_charts_defaults` are also accepted as keyword parameters.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the scatter points

    Examples:

    .. bokeh-plot::
        :source-position: above

        import pandas as pd
        from bokeh.charts import Horizon, output_file, show

        # read in some stock data from the Yahoo Finance API
        AAPL = pd.read_csv(
            "http://ichart.yahoo.com/table.csv?s=AAPL&a=0&b=1&c=2000&d=0&e=1&f=2010",
            parse_dates=['Date'])

        MSFT = pd.read_csv(
            "http://ichart.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2000&d=0&e=1&f=2010",
            parse_dates=['Date'])

        IBM = pd.read_csv(
            "http://ichart.yahoo.com/table.csv?s=IBM&a=0&b=1&c=2000&d=0&e=1&f=2010",
            parse_dates=['Date'])

        data = dict([
            ('AAPL', AAPL['Adj Close']),
            ('Date', AAPL['Date']),
            ('MSFT', MSFT['Adj Close']),
            ('IBM', IBM['Adj Close'])]
        )

        hp = Horizon(data, x='Date', plot_width=800, plot_height=300,
                     title="horizon plot using stock inputs")

        output_file("horizon.html")

        show(hp)

    """
    kws['x'] = x
    kws['y'] = y
    kws['series'] = series

    tools = kws.get('tools', True)
    if tools == True:
        tools = "save,resize,reset"
    elif isinstance(tools, string_types):
        tools = tools.replace('pan', '')
        tools = tools.replace('wheel_zoom', '')
        tools = tools.replace('box_zoom', '')
        tools = tools.replace(',,', ',')
    kws['tools'] = tools

    chart = create_and_build(HorizonBuilder, data, **kws)

    # Hide numerical axis
    chart.left[0].visible = False

    # Add the series names to the y axis
    chart.extra_y_ranges = {"series": FactorRange(factors=chart._builders[0].series_names)}
    chart.add_layout(CategoricalAxis(y_range_name="series"), 'left')
    return chart
def Chord(data, source=None, target=None, value=None, square_matrix=False, label=None, xgrid=False, ygrid=False, **kw):
    """
    Create a chord chart using :class:`ChordBuilder <bokeh.charts.builders.chord_builder.ChordBuilder>`
    to render a chord graph from a variety of value forms.
    This chart displays the inter-relationships between data in a matrix.

    The data can be generated by the chart interface. Given a :class:`DataFrame <pandas.DataFrame>`,
    select two columns to be used as arcs with `source` and `target` attributes, passing by the name of those columns.
    The :class:`Chord <bokeh.charts.builders.chord_builder.Chord>` chart will then deduce the
    relationship between the arcs.

    The value of the connections can be inferred automatically by counting `source` and `target`. If you prefer
    you can assign a fixed value for all the connections with `value` simply passing by a number. A third option is to
    pass a reference to a third column in the :class:`DataFrame <pandas.DataFrame>` with the values for the connections.

    If you want to plot the relationships in a squared matrix, simply pass the matrix and set `square_matrix` attribute
    to `True`.

    Reference: `Chord diagram on Wikipedia <https://en.wikipedia.org/wiki/Chord_diagram>`_

    Args:
        data (:ref:`userguide_charts_data_types`): the data source for the chart.
        source (list(str) or str, optional): Data source to use as origin of the connection to a destination.
        target (list(str) or str, optional): Data source to use as destination of a connection.
        value (list(num) or num, optional): The value the connection should have.
        square_matrix (bool, optional): If square matrix, avoid any calculations during the setup.
        label (list(str), optional): The labels to be put in the areas.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the chord

    Examples:

    .. bokeh-plot::
        :source-position: above

        import pandas as pd
        from bokeh.charts import Chord
        from bokeh.io import show, output_file
        from bokeh.sampledata.les_mis import data

        nodes = data['nodes']
        links = data['links']

        nodes_df = pd.DataFrame(nodes)
        links_df = pd.DataFrame(links)

        source_data = links_df.merge(nodes_df, how='left', left_on='source', right_index=True)
        source_data = source_data.merge(nodes_df, how='left', left_on='target', right_index=True)
        source_data = source_data[source_data["value"] > 5]  # Select those with 5 or more connections

        chord_from_df = Chord(source_data, source="name_x", target="name_y", value="value")
        output_file('chord_from_df.html')
        show(chord_from_df)

    """

    kw["origin"] = source
    kw["destination"] = target
    kw["value"] = value
    kw["square_matrix"] = square_matrix
    kw["label"] = label
    kw['xgrid'] = xgrid
    kw['ygrid'] = ygrid

    chart = create_and_build(ChordBuilder, data, **kw)

    chart.left[0].visible = False
    chart.below[0].visible = False
    chart.outline_line_color = None

    return chart
示例#9
0
def Horizon(data=None, x=None, y=None, series=None, **kws):
    """ Create a horizon chart using :class:`HorizonBuilder
    <bokeh.charts.builders.scatter_builder.HorizonBuilder>`
    to render the geometry from values.

    Args:
        data (:ref:`userguide_charts_data_types`): table-like data
        x (str or list(str), optional): the column label to use for the x dimension
        y (str or list(str), optional): the column label to use for the y dimension

    In addition to the parameters specific to this chart,
    :ref:`userguide_charts_defaults` are also accepted as keyword parameters.

    Returns:
        :class:`Chart`: includes glyph renderers that generate the scatter points

    Examples:

    .. bokeh-plot::
        :source-position: above

        import pandas as pd
        from bokeh.charts import Horizon, output_file, show

        # read in some stock data from the Yahoo Finance API
        AAPL = pd.read_csv(
            "http://ichart.yahoo.com/table.csv?s=AAPL&a=0&b=1&c=2000&d=0&e=1&f=2010",
            parse_dates=['Date'])

        MSFT = pd.read_csv(
            "http://ichart.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2000&d=0&e=1&f=2010",
            parse_dates=['Date'])

        IBM = pd.read_csv(
            "http://ichart.yahoo.com/table.csv?s=IBM&a=0&b=1&c=2000&d=0&e=1&f=2010",
            parse_dates=['Date'])

        data = dict([
            ('AAPL', AAPL['Adj Close']),
            ('Date', AAPL['Date']),
            ('MSFT', MSFT['Adj Close']),
            ('IBM', IBM['Adj Close'])]
        )

        hp = Horizon(data, x='Date', width=800, height=300,
                     title="horizon plot using stock inputs")

        output_file("horizon.html")

        show(hp)

    """
    kws['x'] = x
    kws['y'] = y
    kws['series'] = series

    tools = kws.get('tools', True)
    if tools == True:
        tools = "save,resize,reset"
    elif isinstance(tools, string_types):
        tools = tools.replace('pan', '')
        tools = tools.replace('wheel_zoom', '')
        tools = tools.replace('box_zoom', '')
        tools = tools.replace(',,', ',')
    kws['tools'] = tools

    chart = create_and_build(HorizonBuilder, data, **kws)

    # Hide numerical axis
    chart.left[0].visible = False

    # Add the series names to the y axis
    chart.extra_y_ranges = {"series": FactorRange(factors=chart._builders[0].series_names)}
    chart.add_layout(CategoricalAxis(y_range_name="series"), 'left')
    return chart