def create(): det_data = [] fit_params = {} js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""])) def proposal_textinput_callback(_attr, _old, new): proposal = new.strip() for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS: proposal_path = os.path.join(zebra_proposals_path, proposal) if os.path.isdir(proposal_path): # found it break else: raise ValueError(f"Can not find data for proposal '{proposal}'.") file_list = [] for file in os.listdir(proposal_path): if file.endswith((".ccl", ".dat")): file_list.append((os.path.join(proposal_path, file), file)) file_select.options = file_list file_open_button.disabled = False file_append_button.disabled = False proposal_textinput = TextInput(title="Proposal number:", width=210) proposal_textinput.on_change("value", proposal_textinput_callback) def _init_datatable(): scan_list = [s["idx"] for s in det_data] file_list = [] for scan in det_data: file_list.append(os.path.basename(scan["original_filename"])) scan_table_source.data.update( file=file_list, scan=scan_list, param=[None] * len(scan_list), fit=[0] * len(scan_list), export=[True] * len(scan_list), ) scan_table_source.selected.indices = [] scan_table_source.selected.indices = [0] scan_motor_select.options = det_data[0]["scan_motors"] scan_motor_select.value = det_data[0]["scan_motor"] param_select.value = "user defined" file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250) def file_open_button_callback(): nonlocal det_data det_data = [] for f_name in file_select.value: with open(f_name) as file: base, ext = os.path.splitext(f_name) if det_data: append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) det_data.extend(append_data) else: det_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(det_data, monitor_spinner.value) js_data.data.update( fname=[base + ".comm", base + ".incomm"]) _init_datatable() append_upload_button.disabled = False file_open_button = Button(label="Open New", width=100, disabled=True) file_open_button.on_click(file_open_button_callback) def file_append_button_callback(): for f_name in file_select.value: with open(f_name) as file: _, ext = os.path.splitext(f_name) append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) det_data.extend(append_data) _init_datatable() file_append_button = Button(label="Append", width=100, disabled=True) file_append_button.on_click(file_append_button_callback) def upload_button_callback(_attr, _old, new): nonlocal det_data det_data = [] for f_str, f_name in zip(new, upload_button.filename): with io.StringIO(base64.b64decode(f_str).decode()) as file: base, ext = os.path.splitext(f_name) if det_data: append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) det_data.extend(append_data) else: det_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(det_data, monitor_spinner.value) js_data.data.update( fname=[base + ".comm", base + ".incomm"]) _init_datatable() append_upload_button.disabled = False upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5)) upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200) upload_button.on_change("value", upload_button_callback) def append_upload_button_callback(_attr, _old, new): for f_str, f_name in zip(new, append_upload_button.filename): with io.StringIO(base64.b64decode(f_str).decode()) as file: _, ext = os.path.splitext(f_name) append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) det_data.extend(append_data) _init_datatable() append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5)) append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True) append_upload_button.on_change("value", append_upload_button_callback) def monitor_spinner_callback(_attr, _old, new): if det_data: pyzebra.normalize_dataset(det_data, new) _update_plot() monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145) monitor_spinner.on_change("value", monitor_spinner_callback) def scan_motor_select_callback(_attr, _old, new): if det_data: for scan in det_data: scan["scan_motor"] = new _update_plot() scan_motor_select = Select(title="Scan motor:", options=[], width=145) scan_motor_select.on_change("value", scan_motor_select_callback) def _update_table(): fit_ok = [(1 if "fit" in scan else 0) for scan in det_data] scan_table_source.data.update(fit=fit_ok) def _update_plot(): _update_single_scan_plot(_get_selected_scan()) _update_overview() def _update_single_scan_plot(scan): scan_motor = scan["scan_motor"] y = scan["counts"] x = scan[scan_motor] plot.axis[0].axis_label = scan_motor plot_scatter_source.data.update(x=x, y=y, y_upper=y + np.sqrt(y), y_lower=y - np.sqrt(y)) fit = scan.get("fit") if fit is not None: x_fit = np.linspace(x[0], x[-1], 100) plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit)) x_bkg = [] y_bkg = [] xs_peak = [] ys_peak = [] comps = fit.eval_components(x=x_fit) for i, model in enumerate(fit_params): if "linear" in model: x_bkg = x_fit y_bkg = comps[f"f{i}_"] elif any(val in model for val in ("gaussian", "voigt", "pvoigt")): xs_peak.append(x_fit) ys_peak.append(comps[f"f{i}_"]) plot_bkg_source.data.update(x=x_bkg, y=y_bkg) plot_peak_source.data.update(xs=xs_peak, ys=ys_peak) fit_output_textinput.value = fit.fit_report() else: plot_fit_source.data.update(x=[], y=[]) plot_bkg_source.data.update(x=[], y=[]) plot_peak_source.data.update(xs=[], ys=[]) fit_output_textinput.value = "" def _update_overview(): xs = [] ys = [] param = [] x = [] y = [] par = [] for s, p in enumerate(scan_table_source.data["param"]): if p is not None: scan = det_data[s] scan_motor = scan["scan_motor"] xs.append(scan[scan_motor]) x.extend(scan[scan_motor]) ys.append(scan["counts"]) y.extend([float(p)] * len(scan[scan_motor])) param.append(float(p)) par.extend(scan["counts"]) if det_data: scan_motor = det_data[0]["scan_motor"] ov_plot.axis[0].axis_label = scan_motor ov_param_plot.axis[0].axis_label = scan_motor ov_plot_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs))) if y: mapper["transform"].low = np.min([np.min(y) for y in ys]) mapper["transform"].high = np.max([np.max(y) for y in ys]) ov_param_plot_scatter_source.data.update(x=x, y=y, param=par) if y: interp_f = interpolate.interp2d(x, y, par) x1, x2 = min(x), max(x) y1, y2 = min(y), max(y) image = interp_f( np.linspace(x1, x2, ov_param_plot.inner_width // 10), np.linspace(y1, y2, ov_param_plot.inner_height // 10), assume_sorted=True, ) ov_param_plot_image_source.data.update(image=[image], x=[x1], y=[y1], dw=[x2 - x1], dh=[y2 - y1]) else: ov_param_plot_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[]) def _update_param_plot(): x = [] y = [] fit_param = fit_param_select.value for s, p in zip(det_data, scan_table_source.data["param"]): if "fit" in s and fit_param: x.append(p) y.append(s["fit"].values[fit_param]) param_plot_scatter_source.data.update(x=x, y=y) # Main plot plot = Plot( x_range=DataRange1d(), y_range=DataRange1d(only_visible=True), plot_height=450, plot_width=700, ) plot.add_layout(LinearAxis(axis_label="Counts"), place="left") plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below") plot.add_layout(Grid(dimension=0, ticker=BasicTicker())) plot.add_layout(Grid(dimension=1, ticker=BasicTicker())) plot_scatter_source = ColumnDataSource( dict(x=[0], y=[0], y_upper=[0], y_lower=[0])) plot_scatter = plot.add_glyph( plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue")) plot.add_layout( Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower")) plot_fit_source = ColumnDataSource(dict(x=[0], y=[0])) plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y")) plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0])) plot_bkg = plot.add_glyph( plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")) plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]])) plot_peak = plot.add_glyph( plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")) fit_from_span = Span(location=None, dimension="height", line_dash="dashed") plot.add_layout(fit_from_span) fit_to_span = Span(location=None, dimension="height", line_dash="dashed") plot.add_layout(fit_to_span) plot.add_layout( Legend( items=[ ("data", [plot_scatter]), ("best fit", [plot_fit]), ("peak", [plot_peak]), ("linear", [plot_bkg]), ], location="top_left", click_policy="hide", )) plot.add_tools(PanTool(), WheelZoomTool(), ResetTool()) plot.toolbar.logo = None # Overview multilines plot ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700) ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left") ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below") ov_plot.add_layout(Grid(dimension=0, ticker=BasicTicker())) ov_plot.add_layout(Grid(dimension=1, ticker=BasicTicker())) ov_plot_mline_source = ColumnDataSource( dict(xs=[], ys=[], param=[], color=[])) ov_plot.add_glyph(ov_plot_mline_source, MultiLine(xs="xs", ys="ys", line_color="color")) hover_tool = HoverTool(tooltips=[("param", "@param")]) ov_plot.add_tools(PanTool(), WheelZoomTool(), hover_tool, ResetTool()) ov_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool()) ov_plot.toolbar.logo = None # Overview perams plot ov_param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700) ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left") ov_param_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below") ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker())) ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker())) ov_param_plot_image_source = ColumnDataSource( dict(image=[], x=[], y=[], dw=[], dh=[])) ov_param_plot.add_glyph( ov_param_plot_image_source, Image(image="image", x="x", y="y", dw="dw", dh="dh")) ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], param=[])) mapper = linear_cmap(field_name="param", palette=Turbo256, low=0, high=50) ov_param_plot.add_glyph( ov_param_plot_scatter_source, Scatter(x="x", y="y", line_color=mapper, fill_color=mapper, size=10), ) ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool()) ov_param_plot.toolbar.logo = None # Parameter plot param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700) param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left") param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below") param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker())) param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker())) param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[])) param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y")) param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool()) param_plot.toolbar.logo = None def fit_param_select_callback(_attr, _old, _new): _update_param_plot() fit_param_select = Select(title="Fit parameter", options=[], width=145) fit_param_select.on_change("value", fit_param_select_callback) # Plot tabs plots = Tabs(tabs=[ Panel(child=plot, title="single scan"), Panel(child=ov_plot, title="overview"), Panel(child=ov_param_plot, title="overview map"), Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"), ]) # Scan select def scan_table_select_callback(_attr, old, new): if not new: # skip empty selections return # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click) if len(new) > 1: # drop selection to the previous one scan_table_source.selected.indices = old return if len(old) > 1: # skip unnecessary update caused by selection drop return _update_plot() def scan_table_source_callback(_attr, _old, _new): _update_preview() scan_table_source = ColumnDataSource( dict(file=[], scan=[], param=[], fit=[], export=[])) scan_table_source.on_change("data", scan_table_source_callback) scan_table = DataTable( source=scan_table_source, columns=[ TableColumn(field="file", title="file", width=150), TableColumn(field="scan", title="scan", width=50), TableColumn(field="param", title="param", editor=NumberEditor(), width=50), TableColumn(field="fit", title="Fit", width=50), TableColumn(field="export", title="Export", editor=CheckboxEditor(), width=50), ], width=410, # +60 because of the index column editable=True, autosize_mode="none", ) def scan_table_source_callback(_attr, _old, _new): if scan_table_source.selected.indices: _update_plot() scan_table_source.selected.on_change("indices", scan_table_select_callback) scan_table_source.on_change("data", scan_table_source_callback) def _get_selected_scan(): return det_data[scan_table_source.selected.indices[0]] def param_select_callback(_attr, _old, new): if new == "user defined": param = [None] * len(det_data) else: param = [scan[new] for scan in det_data] scan_table_source.data["param"] = param _update_param_plot() param_select = Select( title="Parameter:", options=["user defined", "temp", "mf", "h", "k", "l"], value="user defined", width=145, ) param_select.on_change("value", param_select_callback) def fit_from_spinner_callback(_attr, _old, new): fit_from_span.location = new fit_from_spinner = Spinner(title="Fit from:", width=145) fit_from_spinner.on_change("value", fit_from_spinner_callback) def fit_to_spinner_callback(_attr, _old, new): fit_to_span.location = new fit_to_spinner = Spinner(title="to:", width=145) fit_to_spinner.on_change("value", fit_to_spinner_callback) def fitparams_add_dropdown_callback(click): # bokeh requires (str, str) for MultiSelect options new_tag = f"{click.item}-{fitparams_select.tags[0]}" fitparams_select.options.append((new_tag, click.item)) fit_params[new_tag] = fitparams_factory(click.item) fitparams_select.tags[0] += 1 fitparams_add_dropdown = Dropdown( label="Add fit function", menu=[ ("Linear", "linear"), ("Gaussian", "gaussian"), ("Voigt", "voigt"), ("Pseudo Voigt", "pvoigt"), # ("Pseudo Voigt1", "pseudovoigt1"), ], width=145, ) fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback) def fitparams_select_callback(_attr, old, new): # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click) if len(new) > 1: # drop selection to the previous one fitparams_select.value = old return if len(old) > 1: # skip unnecessary update caused by selection drop return if new: fitparams_table_source.data.update(fit_params[new[0]]) else: fitparams_table_source.data.update( dict(param=[], value=[], vary=[], min=[], max=[])) fitparams_select = MultiSelect(options=[], height=120, width=145) fitparams_select.tags = [0] fitparams_select.on_change("value", fitparams_select_callback) def fitparams_remove_button_callback(): if fitparams_select.value: sel_tag = fitparams_select.value[0] del fit_params[sel_tag] for elem in fitparams_select.options: if elem[0] == sel_tag: fitparams_select.options.remove(elem) break fitparams_select.value = [] fitparams_remove_button = Button(label="Remove fit function", width=145) fitparams_remove_button.on_click(fitparams_remove_button_callback) def fitparams_factory(function): if function == "linear": params = ["slope", "intercept"] elif function == "gaussian": params = ["amplitude", "center", "sigma"] elif function == "voigt": params = ["amplitude", "center", "sigma", "gamma"] elif function == "pvoigt": params = ["amplitude", "center", "sigma", "fraction"] elif function == "pseudovoigt1": params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"] else: raise ValueError("Unknown fit function") n = len(params) fitparams = dict( param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n, ) if function == "linear": fitparams["value"] = [0, 1] fitparams["vary"] = [False, True] fitparams["min"] = [None, 0] elif function == "gaussian": fitparams["min"] = [0, None, None] return fitparams fitparams_table_source = ColumnDataSource( dict(param=[], value=[], vary=[], min=[], max=[])) fitparams_table = DataTable( source=fitparams_table_source, columns=[ TableColumn(field="param", title="Parameter"), TableColumn(field="value", title="Value", editor=NumberEditor()), TableColumn(field="vary", title="Vary", editor=CheckboxEditor()), TableColumn(field="min", title="Min", editor=NumberEditor()), TableColumn(field="max", title="Max", editor=NumberEditor()), ], height=200, width=350, index_position=None, editable=True, auto_edit=True, ) # start with `background` and `gauss` fit functions added fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear")) fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian")) fitparams_select.value = ["gaussian-1"] # add selection to gauss fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200) def proc_all_button_callback(): for scan, export in zip(det_data, scan_table_source.data["export"]): if export: pyzebra.fit_scan(scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value) pyzebra.get_area( scan, area_method=AREA_METHODS[area_method_radiobutton.active], lorentz=lorentz_checkbox.active, ) _update_plot() _update_table() for scan in det_data: if "fit" in scan: options = list(scan["fit"].params.keys()) fit_param_select.options = options fit_param_select.value = options[0] break _update_param_plot() proc_all_button = Button(label="Process All", button_type="primary", width=145) proc_all_button.on_click(proc_all_button_callback) def proc_button_callback(): scan = _get_selected_scan() pyzebra.fit_scan(scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value) pyzebra.get_area( scan, area_method=AREA_METHODS[area_method_radiobutton.active], lorentz=lorentz_checkbox.active, ) _update_plot() _update_table() for scan in det_data: if "fit" in scan: options = list(scan["fit"].params.keys()) fit_param_select.options = options fit_param_select.value = options[0] break _update_param_plot() proc_button = Button(label="Process Current", width=145) proc_button.on_click(proc_button_callback) area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5)) area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145) lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5)) export_preview_textinput = TextAreaInput(title="Export file preview:", width=450, height=400) def _update_preview(): with tempfile.TemporaryDirectory() as temp_dir: temp_file = temp_dir + "/temp" export_data = [] for s, export in zip(det_data, scan_table_source.data["export"]): if export: export_data.append(s) # pyzebra.export_1D(export_data, temp_file, "fullprof") exported_content = "" file_content = [] for ext in (".comm", ".incomm"): fname = temp_file + ext if os.path.isfile(fname): with open(fname) as f: content = f.read() exported_content += f"{ext} file:\n" + content else: content = "" file_content.append(content) js_data.data.update(content=file_content) export_preview_textinput.value = exported_content save_button = Button(label="Download File(s)", button_type="success", width=220) save_button.js_on_click( CustomJS(args={"js_data": js_data}, code=javaScript)) fitpeak_controls = row( column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button), fitparams_table, Spacer(width=20), column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton), column(fit_to_spinner, proc_button, proc_all_button), ) scan_layout = column(scan_table, row(monitor_spinner, scan_motor_select, param_select)) import_layout = column( proposal_textinput, file_select, row(file_open_button, file_append_button), upload_div, upload_button, append_upload_div, append_upload_button, ) export_layout = column(export_preview_textinput, row(save_button)) tab_layout = column( row(import_layout, scan_layout, plots, Spacer(width=30), export_layout), row(fitpeak_controls, fit_output_textinput), ) return Panel(child=tab_layout, title="param study")
def create(): det_data = {} fit_params = {} js_data = ColumnDataSource( data=dict(content=["", ""], fname=["", ""], ext=["", ""])) def proposal_textinput_callback(_attr, _old, new): proposal = new.strip() for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS: proposal_path = os.path.join(zebra_proposals_path, proposal) if os.path.isdir(proposal_path): # found it break else: raise ValueError(f"Can not find data for proposal '{proposal}'.") file_list = [] for file in os.listdir(proposal_path): if file.endswith((".ccl", ".dat")): file_list.append((os.path.join(proposal_path, file), file)) file_select.options = file_list file_open_button.disabled = False file_append_button.disabled = False proposal_textinput = TextInput(title="Proposal number:", width=210) proposal_textinput.on_change("value", proposal_textinput_callback) def _init_datatable(): scan_list = [s["idx"] for s in det_data] hkl = [f'{s["h"]} {s["k"]} {s["l"]}' for s in det_data] export = [s.get("active", True) for s in det_data] scan_table_source.data.update( scan=scan_list, hkl=hkl, fit=[0] * len(scan_list), export=export, ) scan_table_source.selected.indices = [] scan_table_source.selected.indices = [0] merge_options = [(str(i), f"{i} ({idx})") for i, idx in enumerate(scan_list)] merge_from_select.options = merge_options merge_from_select.value = merge_options[0][0] file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250) def file_open_button_callback(): nonlocal det_data det_data = [] for f_name in file_select.value: with open(f_name) as file: base, ext = os.path.splitext(f_name) if det_data: append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) pyzebra.merge_datasets(det_data, append_data) else: det_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(det_data, monitor_spinner.value) pyzebra.merge_duplicates(det_data) js_data.data.update(fname=[base, base]) _init_datatable() append_upload_button.disabled = False file_open_button = Button(label="Open New", width=100, disabled=True) file_open_button.on_click(file_open_button_callback) def file_append_button_callback(): for f_name in file_select.value: with open(f_name) as file: _, ext = os.path.splitext(f_name) append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) pyzebra.merge_datasets(det_data, append_data) _init_datatable() file_append_button = Button(label="Append", width=100, disabled=True) file_append_button.on_click(file_append_button_callback) def upload_button_callback(_attr, _old, new): nonlocal det_data det_data = [] for f_str, f_name in zip(new, upload_button.filename): with io.StringIO(base64.b64decode(f_str).decode()) as file: base, ext = os.path.splitext(f_name) if det_data: append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) pyzebra.merge_datasets(det_data, append_data) else: det_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(det_data, monitor_spinner.value) pyzebra.merge_duplicates(det_data) js_data.data.update(fname=[base, base]) _init_datatable() append_upload_button.disabled = False upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5)) upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200) upload_button.on_change("value", upload_button_callback) def append_upload_button_callback(_attr, _old, new): for f_str, f_name in zip(new, append_upload_button.filename): with io.StringIO(base64.b64decode(f_str).decode()) as file: _, ext = os.path.splitext(f_name) append_data = pyzebra.parse_1D(file, ext) pyzebra.normalize_dataset(append_data, monitor_spinner.value) pyzebra.merge_datasets(det_data, append_data) _init_datatable() append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5)) append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True) append_upload_button.on_change("value", append_upload_button_callback) def monitor_spinner_callback(_attr, old, new): if det_data: pyzebra.normalize_dataset(det_data, new) _update_plot(_get_selected_scan()) monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145) monitor_spinner.on_change("value", monitor_spinner_callback) def _update_table(): fit_ok = [(1 if "fit" in scan else 0) for scan in det_data] scan_table_source.data.update(fit=fit_ok) def _update_plot(scan): scan_motor = scan["scan_motor"] y = scan["counts"] x = scan[scan_motor] plot.axis[0].axis_label = scan_motor plot_scatter_source.data.update(x=x, y=y, y_upper=y + np.sqrt(y), y_lower=y - np.sqrt(y)) fit = scan.get("fit") if fit is not None: x_fit = np.linspace(x[0], x[-1], 100) plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit)) x_bkg = [] y_bkg = [] xs_peak = [] ys_peak = [] comps = fit.eval_components(x=x_fit) for i, model in enumerate(fit_params): if "linear" in model: x_bkg = x_fit y_bkg = comps[f"f{i}_"] elif any(val in model for val in ("gaussian", "voigt", "pvoigt")): xs_peak.append(x_fit) ys_peak.append(comps[f"f{i}_"]) plot_bkg_source.data.update(x=x_bkg, y=y_bkg) plot_peak_source.data.update(xs=xs_peak, ys=ys_peak) fit_output_textinput.value = fit.fit_report() else: plot_fit_source.data.update(x=[], y=[]) plot_bkg_source.data.update(x=[], y=[]) plot_peak_source.data.update(xs=[], ys=[]) fit_output_textinput.value = "" # Main plot plot = Plot( x_range=DataRange1d(), y_range=DataRange1d(only_visible=True), plot_height=470, plot_width=700, ) plot.add_layout(LinearAxis(axis_label="Counts"), place="left") plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below") plot.add_layout(Grid(dimension=0, ticker=BasicTicker())) plot.add_layout(Grid(dimension=1, ticker=BasicTicker())) plot_scatter_source = ColumnDataSource( dict(x=[0], y=[0], y_upper=[0], y_lower=[0])) plot_scatter = plot.add_glyph( plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue")) plot.add_layout( Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower")) plot_fit_source = ColumnDataSource(dict(x=[0], y=[0])) plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y")) plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0])) plot_bkg = plot.add_glyph( plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")) plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]])) plot_peak = plot.add_glyph( plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")) fit_from_span = Span(location=None, dimension="height", line_dash="dashed") plot.add_layout(fit_from_span) fit_to_span = Span(location=None, dimension="height", line_dash="dashed") plot.add_layout(fit_to_span) plot.add_layout( Legend( items=[ ("data", [plot_scatter]), ("best fit", [plot_fit]), ("peak", [plot_peak]), ("linear", [plot_bkg]), ], location="top_left", click_policy="hide", )) plot.add_tools(PanTool(), WheelZoomTool(), ResetTool()) plot.toolbar.logo = None # Scan select def scan_table_select_callback(_attr, old, new): if not new: # skip empty selections return # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click) if len(new) > 1: # drop selection to the previous one scan_table_source.selected.indices = old return if len(old) > 1: # skip unnecessary update caused by selection drop return _update_plot(det_data[new[0]]) def scan_table_source_callback(_attr, _old, _new): _update_preview() scan_table_source = ColumnDataSource( dict(scan=[], hkl=[], fit=[], export=[])) scan_table_source.on_change("data", scan_table_source_callback) scan_table = DataTable( source=scan_table_source, columns=[ TableColumn(field="scan", title="Scan", width=50), TableColumn(field="hkl", title="hkl", width=100), TableColumn(field="fit", title="Fit", width=50), TableColumn(field="export", title="Export", editor=CheckboxEditor(), width=50), ], width=310, # +60 because of the index column height=350, autosize_mode="none", editable=True, ) scan_table_source.selected.on_change("indices", scan_table_select_callback) def _get_selected_scan(): return det_data[scan_table_source.selected.indices[0]] merge_from_select = Select(title="scan:", width=145) def merge_button_callback(): scan_into = _get_selected_scan() scan_from = det_data[int(merge_from_select.value)] if scan_into is scan_from: print("WARNING: Selected scans for merging are identical") return pyzebra.merge_scans(scan_into, scan_from) _update_plot(_get_selected_scan()) merge_button = Button(label="Merge into current", width=145) merge_button.on_click(merge_button_callback) def restore_button_callback(): pyzebra.restore_scan(_get_selected_scan()) _update_plot(_get_selected_scan()) restore_button = Button(label="Restore scan", width=145) restore_button.on_click(restore_button_callback) def fit_from_spinner_callback(_attr, _old, new): fit_from_span.location = new fit_from_spinner = Spinner(title="Fit from:", width=145) fit_from_spinner.on_change("value", fit_from_spinner_callback) def fit_to_spinner_callback(_attr, _old, new): fit_to_span.location = new fit_to_spinner = Spinner(title="to:", width=145) fit_to_spinner.on_change("value", fit_to_spinner_callback) def fitparams_add_dropdown_callback(click): # bokeh requires (str, str) for MultiSelect options new_tag = f"{click.item}-{fitparams_select.tags[0]}" fitparams_select.options.append((new_tag, click.item)) fit_params[new_tag] = fitparams_factory(click.item) fitparams_select.tags[0] += 1 fitparams_add_dropdown = Dropdown( label="Add fit function", menu=[ ("Linear", "linear"), ("Gaussian", "gaussian"), ("Voigt", "voigt"), ("Pseudo Voigt", "pvoigt"), # ("Pseudo Voigt1", "pseudovoigt1"), ], width=145, ) fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback) def fitparams_select_callback(_attr, old, new): # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click) if len(new) > 1: # drop selection to the previous one fitparams_select.value = old return if len(old) > 1: # skip unnecessary update caused by selection drop return if new: fitparams_table_source.data.update(fit_params[new[0]]) else: fitparams_table_source.data.update( dict(param=[], value=[], vary=[], min=[], max=[])) fitparams_select = MultiSelect(options=[], height=120, width=145) fitparams_select.tags = [0] fitparams_select.on_change("value", fitparams_select_callback) def fitparams_remove_button_callback(): if fitparams_select.value: sel_tag = fitparams_select.value[0] del fit_params[sel_tag] for elem in fitparams_select.options: if elem[0] == sel_tag: fitparams_select.options.remove(elem) break fitparams_select.value = [] fitparams_remove_button = Button(label="Remove fit function", width=145) fitparams_remove_button.on_click(fitparams_remove_button_callback) def fitparams_factory(function): if function == "linear": params = ["slope", "intercept"] elif function == "gaussian": params = ["amplitude", "center", "sigma"] elif function == "voigt": params = ["amplitude", "center", "sigma", "gamma"] elif function == "pvoigt": params = ["amplitude", "center", "sigma", "fraction"] elif function == "pseudovoigt1": params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"] else: raise ValueError("Unknown fit function") n = len(params) fitparams = dict( param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n, ) if function == "linear": fitparams["value"] = [0, 1] fitparams["vary"] = [False, True] fitparams["min"] = [None, 0] elif function == "gaussian": fitparams["min"] = [0, None, None] return fitparams fitparams_table_source = ColumnDataSource( dict(param=[], value=[], vary=[], min=[], max=[])) fitparams_table = DataTable( source=fitparams_table_source, columns=[ TableColumn(field="param", title="Parameter"), TableColumn(field="value", title="Value", editor=NumberEditor()), TableColumn(field="vary", title="Vary", editor=CheckboxEditor()), TableColumn(field="min", title="Min", editor=NumberEditor()), TableColumn(field="max", title="Max", editor=NumberEditor()), ], height=200, width=350, index_position=None, editable=True, auto_edit=True, ) # start with `background` and `gauss` fit functions added fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear")) fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian")) fitparams_select.value = ["gaussian-1"] # add selection to gauss fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200) def proc_all_button_callback(): for scan, export in zip(det_data, scan_table_source.data["export"]): if export: pyzebra.fit_scan(scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value) pyzebra.get_area( scan, area_method=AREA_METHODS[area_method_radiobutton.active], lorentz=lorentz_checkbox.active, ) _update_plot(_get_selected_scan()) _update_table() proc_all_button = Button(label="Process All", button_type="primary", width=145) proc_all_button.on_click(proc_all_button_callback) def proc_button_callback(): scan = _get_selected_scan() pyzebra.fit_scan(scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value) pyzebra.get_area( scan, area_method=AREA_METHODS[area_method_radiobutton.active], lorentz=lorentz_checkbox.active, ) _update_plot(scan) _update_table() proc_button = Button(label="Process Current", width=145) proc_button.on_click(proc_button_callback) area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5)) area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145) lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5)) export_preview_textinput = TextAreaInput(title="Export file preview:", width=500, height=400) def _update_preview(): with tempfile.TemporaryDirectory() as temp_dir: temp_file = temp_dir + "/temp" export_data = [] for s, export in zip(det_data, scan_table_source.data["export"]): if export: export_data.append(s) pyzebra.export_1D( export_data, temp_file, export_target_select.value, hkl_precision=int(hkl_precision_select.value), ) exported_content = "" file_content = [] for ext in EXPORT_TARGETS[export_target_select.value]: fname = temp_file + ext if os.path.isfile(fname): with open(fname) as f: content = f.read() exported_content += f"{ext} file:\n" + content else: content = "" file_content.append(content) js_data.data.update(content=file_content) export_preview_textinput.value = exported_content def export_target_select_callback(_attr, _old, new): js_data.data.update(ext=EXPORT_TARGETS[new]) _update_preview() export_target_select = Select(title="Export target:", options=list(EXPORT_TARGETS.keys()), value="fullprof", width=80) export_target_select.on_change("value", export_target_select_callback) js_data.data.update(ext=EXPORT_TARGETS[export_target_select.value]) def hkl_precision_select_callback(_attr, _old, _new): _update_preview() hkl_precision_select = Select(title="hkl precision:", options=["2", "3", "4"], value="2", width=80) hkl_precision_select.on_change("value", hkl_precision_select_callback) save_button = Button(label="Download File(s)", button_type="success", width=200) save_button.js_on_click( CustomJS(args={"js_data": js_data}, code=javaScript)) fitpeak_controls = row( column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button), fitparams_table, Spacer(width=20), column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton), column(fit_to_spinner, proc_button, proc_all_button), ) scan_layout = column( scan_table, row(monitor_spinner, column(Spacer(height=19), restore_button)), row(column(Spacer(height=19), merge_button), merge_from_select), ) import_layout = column( proposal_textinput, file_select, row(file_open_button, file_append_button), upload_div, upload_button, append_upload_div, append_upload_button, ) export_layout = column( export_preview_textinput, row(export_target_select, hkl_precision_select, column(Spacer(height=19), row(save_button))), ) tab_layout = column( row(import_layout, scan_layout, plot, Spacer(width=30), export_layout), row(fitpeak_controls, fit_output_textinput), ) return Panel(child=tab_layout, title="ccl integrate")