def conv_block(self, xx, i, j): """ :param xx: input for the i-th block :param i: i-th block :param j: the j-th convolution block :return: the ouput of the i-th conv block in the """ out = tf.add( tf.nn.conv2d( xx, self.task_parameter["res" + str(i + 1) + "conv_w" + str(j + 1)], self.no_stride, "SAME", ), self.task_parameter["res" + str(i + 1) + "conv_bias" + str(j + 1)], ) out = tf.contrib.layers.batch_norm( out, activation_fn=None, variables_collections=self.var_collections, scope="scope" + str(i + 1) + str(j + 1), reuse=self.reuse, ) return network_utils.leaky_relu(out, 0.1)
def conv_block(xx): out = tcl.conv2d( xx, n_filters, 3, activation_fn=None, normalizer_fn=tcl.batch_norm, variables_collections=self.var_coll, ) return network_utils.leaky_relu(out, 0.1)
def conv_block(xx, i, j): out = tf.nn.conv2d( xx, self.task_parameter["res" + str(i + 1) + "conv_w" + str(j + 1)], self.no_stride, "SAME", ) out = tf.contrib.layers.batch_norm(out, activation_fn=None) return network_utils.leaky_relu(out, 0.1)
def conv_block(self, xx, i, j): out = tf.add( tf.nn.conv2d( xx, self.task_parameter["res" + str(i + 1) + "conv_w" + str(j + 1)], self.no_stride, "SAME", ), self.task_parameter["res" + str(i + 1) + "conv_bias" + str(j + 1)], ) out = tf.contrib.layers.batch_norm( out, activation_fn=None, variables_collections=self.var_collections, scope="scope" + str(i + 1) + str(j + 1), reuse=self.reuse, ) return network_utils.leaky_relu(out, 0.1)