示例#1
0
def main(args):

    poas = []
    init(args.seed, args.device)

    print("* loading data")
    testdata = ChunkDataSet(
        *load_data(limit=args.chunks, shuffle=args.shuffle))
    dataloader = DataLoader(testdata, batch_size=args.batchsize)

    for w in [int(i) for i in args.weights.split(',')]:

        print("* loading model", w)
        model = load_model(args.model_directory, args.device, weights=w)

        print("* calling")
        predictions = []
        t0 = time.perf_counter()

        for data, *_ in dataloader:
            with torch.no_grad():
                log_probs = model(data.to(args.device))
                predictions.append(log_probs.exp().cpu().numpy())

        duration = time.perf_counter() - t0

        references = [
            decode_ref(target, model.alphabet)
            for target in dataloader.dataset.targets
        ]
        sequences = [
            decode_ctc(post, model.alphabet)
            for post in np.concatenate(predictions)
        ]
        accuracies = list(starmap(accuracy, zip(references, sequences)))

        if args.poa: poas.append(sequences)

        print("* mean      %.2f%%" % np.mean(accuracies))
        print("* median    %.2f%%" % np.median(accuracies))
        print("* time      %.2f" % duration)
        print("* samples/s %.2E" % (args.chunks * data.shape[2] / duration))

    if args.poa:

        print("* doing poa")
        t0 = time.perf_counter()
        # group each sequence prediction per model together
        poas = [list(seq) for seq in zip(*poas)]

        consensuses = poa(poas)
        duration = time.perf_counter() - t0

        accuracies = list(starmap(accuracy, zip(references, consensuses)))

        print("* mean      %.2f%%" % np.mean(accuracies))
        print("* median    %.2f%%" % np.median(accuracies))
        print("* time      %.2f" % duration)
示例#2
0
def main(args):

    poas = []
    init(args.seed, args.device)

    print("* loading data")
    testdata = ChunkDataSet(
        *load_data(
            limit=args.chunks, shuffle=args.shuffle,
            directory=args.directory, validation=True
        )
    )
    dataloader = DataLoader(testdata, batch_size=args.batchsize)
    accuracy_with_cov = lambda ref, seq: accuracy(ref, seq, min_coverage=args.min_coverage)

    for w in [int(i) for i in args.weights.split(',')]:

        seqs = []

        print("* loading model", w)
        model = load_model(args.model_directory, args.device, weights=w)

        print("* calling")
        t0 = time.perf_counter()

        with torch.no_grad():
            for data, *_ in dataloader:
                if half_supported():
                    data = data.type(torch.float16).to(args.device)
                else:
                    data = data.to(args.device)

                log_probs = model(data)

                if hasattr(model, 'decode_batch'):
                    seqs.extend(model.decode_batch(log_probs))
                else:
                    seqs.extend([model.decode(p) for p in permute(log_probs, 'TNC', 'NTC')])

        duration = time.perf_counter() - t0

        refs = [decode_ref(target, model.alphabet) for target in dataloader.dataset.targets]
        accuracies = [accuracy_with_cov(ref, seq) if len(seq) else 0. for ref, seq in zip(refs, seqs)]

        if args.poa: poas.append(sequences)

        print("* mean      %.2f%%" % np.mean(accuracies))
        print("* median    %.2f%%" % np.median(accuracies))
        print("* time      %.2f" % duration)
        print("* samples/s %.2E" % (args.chunks * data.shape[2] / duration))

    if args.poa:

        print("* doing poa")
        t0 = time.perf_counter()
        # group each sequence prediction per model together
        poas = [list(seq) for seq in zip(*poas)]
        consensuses = poa(poas)
        duration = time.perf_counter() - t0
        accuracies = list(starmap(accuracy_with_coverage_filter, zip(references, consensuses)))

        print("* mean      %.2f%%" % np.mean(accuracies))
        print("* median    %.2f%%" % np.median(accuracies))
        print("* time      %.2f" % duration)