示例#1
0
def main(args):

    sys.stderr.write("> loading model\n")

    model = load_model(
        args.model_directory,
        args.device,
        weights=int(args.weights),
        half=args.half,
        chunksize=args.chunksize,
        use_rt=args.cudart,
    )

    samples = 0
    num_reads = 0
    max_read_size = 4e6
    dtype = np.float16 if args.half else np.float32
    reader = PreprocessReader(args.reads_directory)
    writer = DecoderWriterPool(model,
                               beamsize=args.beamsize,
                               fastq=args.fastq,
                               reference=args.reference)

    t0 = time.perf_counter()
    sys.stderr.write("> calling\n")

    with writer, reader, torch.no_grad():

        while True:

            read = reader.queue.get()
            if read is None:
                break

            if len(read.signal) > max_read_size:
                sys.stderr.write("> skipping long read %s (%s samples)\n" %
                                 (read.read_id, len(read.signal)))
                continue

            num_reads += 1
            samples += len(read.signal)

            raw_data = torch.tensor(read.signal.astype(dtype))
            chunks = chunk(raw_data, args.chunksize, args.overlap)

            posteriors = model(chunks.to(args.device)).cpu().numpy()
            posteriors = stitch(posteriors, args.overlap // model.stride // 2)

            writer.queue.put((read, posteriors[:raw_data.shape[0]]))

    duration = time.perf_counter() - t0

    sys.stderr.write("> completed reads: %s\n" % num_reads)
    sys.stderr.write("> duration: %s\n" %
                     timedelta(seconds=np.round(duration)))
    sys.stderr.write("> samples per second %.1E\n" % (samples / duration))
    sys.stderr.write("> done\n")
示例#2
0
def stitch_results(results, length, size, overlap, stride, reverse=False):
    """
    Stitch results together with a given overlap.
    """
    if isinstance(results, dict):
        return {
            k: stitch_results(v,
                              length,
                              size,
                              overlap,
                              stride,
                              reverse=reverse)
            for k, v in results.items()
        }
    return stitch(results, size, overlap, length, stride, reverse=reverse)
示例#3
0
def basecall(model, reads, beamsize=5, chunksize=0, overlap=0, batchsize=1, qscores=False, reverse=None):
    """
    Basecalls a set of reads.
    """
    chunks = (
        (read, chunk(torch.tensor(read.signal), chunksize, overlap)) for read in reads
    )
    scores = unbatchify(
        (k, compute_scores(model, v)) for k, v in batchify(chunks, batchsize)
    )
    scores = (
        (read, {'scores': stitch(v, chunksize, overlap, len(read.signal), model.stride)}) for read, v in scores
    )
    decoder = partial(decode, decode=model.decode, beamsize=beamsize, qscores=qscores, stride=model.stride)
    basecalls = process_map(decoder, scores, n_proc=4)
    return basecalls
示例#4
0
def main(args):

    if args.save_ctc and not args.reference:
        sys.stderr.write("> a reference is needed to output ctc training data\n")
        exit(1)

    if args.save_ctc:
        args.overlap = 900
        args.chunksize = 3600

    sys.stderr.write("> loading model\n")

    model = load_model(
        args.model_directory, args.device, weights=int(args.weights),
        half=args.half, chunksize=args.chunksize, use_rt=args.cudart,
    )

    if args.reference:
        sys.stderr.write("> loading reference\n")
        aligner = Aligner(args.reference, preset='ont-map')
        if not aligner:
            sys.stderr.write("> failed to load/build index\n")
            sys.exit(1)
    else:
        aligner = None

    samples = 0
    num_reads = 0
    max_read_size = 4e6
    dtype = np.float16 if args.half else np.float32
    ctc_writer = CTCWriter(model, aligner)
    reader = PreprocessReader(args.reads_directory)
    writer = DecoderWriterPool(model, beamsize=args.beamsize, fastq=args.fastq, aligner=aligner)

    t0 = time.perf_counter()
    sys.stderr.write("> calling\n")

    with writer, ctc_writer, reader, torch.no_grad():

        while True:

            read = reader.queue.get()
            if read is None:
                break

            if len(read.signal) > max_read_size:
                sys.stderr.write("> skipping long read %s (%s samples)\n" % (read.read_id, len(read.signal)))
                continue

            num_reads += 1
            samples += len(read.signal)

            raw_data = torch.tensor(read.signal.astype(dtype))
            chunks = chunk(raw_data, args.chunksize, args.overlap)

            posteriors_ = model(chunks.to(args.device)).cpu().numpy()
            posteriors = stitch(posteriors_, args.overlap // model.stride // 2)

            writer.queue.put((read, posteriors[:raw_data.shape[0]]))
            if args.save_ctc and len(raw_data) > args.chunksize:
                ctc_writer.queue.put((chunks.numpy(), posteriors_))

    duration = time.perf_counter() - t0

    sys.stderr.write("> completed reads: %s\n" % num_reads)
    sys.stderr.write("> duration: %s\n" % timedelta(seconds=np.round(duration)))
    sys.stderr.write("> samples per second %.1E\n" % (samples / duration))
    sys.stderr.write("> done\n")
示例#5
0
def main(args):
    if args.save_ctc and not args.reference:
        sys.stderr.write(
            "> a reference is needed to output ctc training data\n")
        exit(1)

    if args.save_ctc:
        args.overlap = 900
        args.chunksize = 3600

    sys.stderr.write("> loading model\n")

    model = load_model(
        args.model_directory,
        args.device,
        weights=int(args.weights),
        half=args.half,
        chunksize=args.chunksize,
        use_rt=args.cudart,
    )

    if args.reference:
        sys.stderr.write("> loading reference\n")
        aligner = Aligner(args.reference, preset='ont-map')
        if not aligner:
            sys.stderr.write("> failed to load/build index\n")
            sys.exit(1)
        write_sam_header(aligner)
    else:
        aligner = None


#    with open(summary_file(), 'w') as summary:
#        write_summary_header(summary, alignment=aligner)

    samples = 0
    num_reads = 0
    max_read_size = 4e6
    read_ids = column_to_set(args.read_ids)
    dtype = np.float16 if args.half else np.float32
    reader = ProcessIterator(get_reads(args.reads_directory,
                                       read_ids=read_ids,
                                       skip=args.skip),
                             progress=True)
    writer = ProcessPool(DecoderWriter,
                         model=model,
                         aligner=aligner,
                         beamsize=args.beamsize,
                         fastq=args.fastq)
    ctc_writer = CTCWriter(model,
                           aligner,
                           min_coverage=args.ctc_min_coverage,
                           min_accuracy=args.ctc_min_accuracy)

    t0 = time.perf_counter()
    sys.stderr.write("> calling\n")

    with writer, ctc_writer, reader, torch.no_grad():

        while True:

            read = reader.queue.get()
            if read is None:
                break

            if len(read.signal) > max_read_size:
                sys.stderr.write("> skipping long read %s (%s samples)\n" %
                                 (read.read_id, len(read.signal)))
                continue

            num_reads += 1
            samples += len(read.signal)

            raw_data = torch.tensor(read.signal.astype(dtype))
            print('bonito: raw_data.shape: ', raw_data.shape)
            chunks = chunk(raw_data, args.chunksize, args.overlap)

            posteriors_ = model(chunks.to(args.device)).cpu().numpy()
            posteriors = stitch(posteriors_, args.overlap // model.stride // 2)
            if args.write_basecall:
                writer.queue.put((read, posteriors[:raw_data.shape[0]]))
            if args.save_ctc and len(raw_data) > args.chunksize:
                ctc_writer.queue.put((chunks.numpy(), posteriors_))
            print('bonito: posteriors.shape', posteriors.shape)
            posteriors.tofile(args.post_file)

    duration = time.perf_counter() - t0

    sys.stderr.write("> completed reads: %s\n" % num_reads)
    sys.stderr.write("> duration: %s\n" %
                     timedelta(seconds=np.round(duration)))
    sys.stderr.write("> samples per second %.1E\n" % (samples / duration))
    sys.stderr.write("> done\n")