def plot_dog_track(xs, dog, measurement_var, process_var):
    N = len(xs)
    bp.plot_track(dog)
    bp.plot_measurements(xs, label='Sensor')
    bp.set_labels('variance = {}, process variance = {}'.format(
              measurement_var, process_var), 'time', 'pos')
    plt.ylim([0, N])
    bp.show_legend()
    plt.show()
def plot_dog_track(xs, measurement_var, process_var):
    N = len(xs)
    bp.plot_track([0, N-1], [1, N])
    bp.plot_measurements(xs, label='Sensor')
    bp.set_labels('variance = {}, process variance = {}'.format(
              measurement_var, process_var), 'time', 'pos')
    plt.ylim([0, N])
    bp.show_legend()
    plt.show()
def plot_track(ps,
               actual,
               zs,
               cov,
               std_scale=1,
               plot_P=True,
               y_lim=None,
               dt=1.,
               xlabel='time',
               ylabel='position',
               title='Kalman Filter'):

    count = len(zs)
    zs = np.asarray(zs)

    cov = np.asarray(cov)
    std = std_scale * np.sqrt(cov[:, 0, 0])
    std_top = np.minimum(actual + std, [count + 10])
    std_btm = np.maximum(actual - std, [-50])

    std_top = actual + std
    std_btm = actual - std

    bp.plot_track(actual, c='k')
    bp.plot_measurements(range(1, count + 1), zs)
    bp.plot_filter(range(1, count + 1), ps)

    plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.fill_between(range(len(std_top)),
                     std_top,
                     std_btm,
                     facecolor='yellow',
                     alpha=0.2,
                     interpolate=True)
    plt.legend(loc=4)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    if y_lim is not None:
        plt.ylim(y_lim)
    else:
        plt.ylim((-50, count + 10))

    plt.xlim((0, count))
    plt.title(title)
    plt.show()

    if plot_P:
        ax = plt.subplot(121)
        ax.set_title("$\sigma^2_x$ (pos variance)")
        plot_covariance(cov, (0, 0))
        ax = plt.subplot(122)
        ax.set_title("$\sigma^2_\dot{x}$ (vel variance)")
        plot_covariance(cov, (1, 1))
        plt.show()
def plot_gh_results(weights, estimates, predictions):
    n = len(weights)

    xs = list(range(n+1))
    book_plots.plot_filter(xs, estimates, marker='o')
    book_plots.plot_measurements(xs[1:], weights, color='k', label='Scale', lines=False)
    book_plots.plot_track([0, n], [160, 160+n], c='k', label='Actual Weight')
    book_plots.plot_track(xs[1:], predictions, c='r', label='Predictions', marker='v')
    book_plots.show_legend()
    book_plots.set_labels(x='day', y='weight (lbs)')
    plt.xlim([0, n])
    plt.show()
def plot_track(ps, actual, zs, cov, std_scale=1,
               plot_P=True, y_lim=None, dt=1.,
               xlabel='time', ylabel='position',
               title='Kalman Filter'):

    count = len(zs)
    zs = np.asarray(zs)

    cov = np.asarray(cov)
    std = std_scale*np.sqrt(cov[:,0,0])
    std_top = np.minimum(actual+std, [count + 10])
    std_btm = np.maximum(actual-std, [-50])

    std_top = actual + std
    std_btm = actual - std

    bp.plot_track(actual,c='k')
    bp.plot_measurements(range(1, count + 1), zs)
    bp.plot_filter(range(1, count + 1), ps)

    plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.fill_between(range(len(std_top)), std_top, std_btm,
                     facecolor='yellow', alpha=0.2, interpolate=True)
    plt.legend(loc=4)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    if y_lim is not None:
        plt.ylim(y_lim)
    else:
        plt.ylim((-50, count + 10))

    plt.xlim((0,count))
    plt.title(title)
    plt.show()

    if plot_P:
        ax = plt.subplot(121)
        ax.set_title("$\sigma^2_x$ (pos variance)")
        plot_covariance(cov, (0, 0))
        ax = plt.subplot(122)
        ax.set_title("$\sigma^2_\dot{x}$ (vel variance)")
        plot_covariance(cov, (1, 1))
        plt.show()
def plot_track(ps, zs, cov, plot_P=True, y_lim=None, title='Kalman Filter'):

    count = len(zs)
    actual = np.linspace(0, count - 1, count)
    cov = np.asarray(cov)
    std = np.sqrt(cov[:, 0, 0])
    std_top = np.minimum(actual + std, [count + 10])
    std_btm = np.maximum(actual - std, [-50])

    std_top = actual + std
    std_btm = actual - std

    bp.plot_track(actual, c='k')
    bp.plot_measurements(range(1, count + 1), zs)
    bp.plot_filter(range(1, count + 1), ps)

    plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.fill_between(range(len(std_top)),
                     std_top,
                     std_btm,
                     facecolor='yellow',
                     alpha=0.2,
                     interpolate=True)
    plt.legend(loc=4)
    if y_lim is not None:
        plt.ylim(y_lim)
    else:
        plt.ylim((-50, count + 10))

    plt.xlim((0, count))
    plt.title(title)
    plt.show()

    if plot_P:
        ax = plt.subplot(121)
        ax.set_title("$\sigma^2_x$")
        plot_covariance(cov, (0, 0))
        ax = plt.subplot(122)
        ax.set_title("$\sigma^2_y$")
        plot_covariance(cov, (1, 1))
        plt.show()
def plot_gh_results(weights, estimates, predictions):
    n = len(weights)

    xs = list(range(n + 1))
    book_plots.plot_filter(xs, estimates, marker='o')
    book_plots.plot_measurements(xs[1:],
                                 weights,
                                 color='k',
                                 label='Scale',
                                 lines=False)
    book_plots.plot_track([0, n], [160, 160 + n], c='k', label='Actual Weight')
    book_plots.plot_track(xs[1:],
                          predictions,
                          c='r',
                          label='Predictions',
                          marker='v')
    book_plots.show_legend()
    book_plots.set_labels(x='day', y='weight (lbs)')
    plt.xlim([0, n])
    plt.show()
def plot_track(ps, zs, cov,
               plot_P=True, y_lim=None,
               title='Kalman Filter'):

    count = len(zs)
    actual = np.linspace(0, count - 1, count)
    cov = np.asarray(cov)
    std = np.sqrt(cov[:,0,0])
    std_top = np.minimum(actual+std, [count + 10])
    std_btm = np.maximum(actual-std, [-50])

    std_top = actual+std
    std_btm = actual-std

    bp.plot_track(actual,c='k')
    bp.plot_measurements(range(1, count + 1), zs)
    bp.plot_filter(range(1, count + 1), ps)

    plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4)
    plt.fill_between(range(len(std_top)), std_top, std_btm,
                     facecolor='yellow', alpha=0.2, interpolate=True)
    plt.legend(loc=4)
    if y_lim is not None:
        plt.ylim(y_lim)
    else:
        plt.ylim((-50, count + 10))

    plt.xlim((0,count))
    plt.title(title)
    plt.show()

    if plot_P:
        ax = plt.subplot(121)
        ax.set_title("$\sigma^2_x$")
        plot_covariance(cov, (0, 0))
        ax = plt.subplot(122)
        ax.set_title("$\sigma^2_y$")
        plot_covariance(cov, (1, 1))
        plt.show()
def plot_radar(xs, track, time):
    plt.figure()
    bp.plot_track(time, track[:, 0])
    bp.plot_filter(time, xs[:, 0])
    plt.legend(loc=4)
    plt.xlabel('time (sec)')
    plt.ylabel('position (m)')

    plt.figure()
    bp.plot_track(time, track[:, 1])
    bp.plot_filter(time, xs[:, 1])
    plt.legend(loc=4)
    plt.xlabel('time (sec)')
    plt.ylabel('velocity (m/s)')

    plt.figure()
    bp.plot_track(time, track[:, 2])
    bp.plot_filter(time, xs[:, 2])
    plt.ylabel('altitude (m)')
    plt.legend(loc=4)
    plt.xlabel('time (sec)')
    plt.ylim((900, 1600))
    plt.show()
def plot_radar(xs, track, time):
    plt.figure()
    bp.plot_track(time, track[:, 0])
    bp.plot_filter(time, xs[:, 0])
    plt.legend(loc=4)
    plt.xlabel('time (sec)')
    plt.ylabel('position (m)')

    plt.figure()
    bp.plot_track(time, track[:, 1])
    bp.plot_filter(time, xs[:, 1])
    plt.legend(loc=4)
    plt.xlabel('time (sec)')
    plt.ylabel('velocity (m/s)')

    plt.figure()
    bp.plot_track(time, track[:, 2])
    bp.plot_filter(time, xs[:, 2])
    plt.ylabel('altitude (m)')
    plt.legend(loc=4)
    plt.xlabel('time (sec)')
    plt.ylim((900, 1600))
    plt.show()
示例#11
0
    x = x0
    results = []
    for z in data:
        x_est = x + (dx * dt)
        dx = dx
        if pred is not None:
            pred.append(x_est)
        residual = z - x_est
        dx = dx + h * (residual) / dt
        x = x_est + g * residual
        results.append(x)
    return np.array(results)


weights = shapeVar
book_plots.plot_track([0, dim], [Min, Max], label='Actual weight')
data = g_h_filter(data=weights, x0=1, dx=1, g=3. / 10, h=1. / 3, dt=1.)
#plot_g_h_results(weights, data);
#plt.show()
#print(np.amin(data))

#-----------------------further-adjustment---------------------------
# for negative conc values
CMIN = 0
i = 0
for index in range(0, dim):
    if (data[i] < CMIN and i < dim):
        data[i] = CMIN
#    print(data[i])
    i = i + 1
示例#12
0
    kf.P = np.eye(kf.dim_x) * .1
    if noise_factor is not None:
        kf.R = np.eye(kf.dim_z) * noise_factor

noise_factor = 2
dt = 0.1
figure()
# initialize filter
cvfilter= make_cv_filter(dt, noise_factor)
initialize_filter(cvfilter)
xs = pos[:, 0]
z_xs = zs[:, 0]
# plot the results
kxs, _, _, _ = cvfilter.batch_filter(z_xs)
t = np.arange(0, len(z_xs) * dt, dt)
bp.plot_track(t, xs)
bp.plot_filter(t, kxs[:, 0], label='KF')
bp.set_labels(title='Track vs KF', x='time (sec)', y='X');
plt.legend(loc=4);

figure()
# reinitialize filter
initialize_filter(cvfilter)
pos2, zs2 = generate_data(120, noise_factor)
xs2 = pos2[:, 0]
z_xs2 = zs2[:, 0]
t = np.arange(0, len(xs2) * dt, dt)
# plot the results
kxs2, _, _, _ = cvfilter.batch_filter(z_xs2)
bp.plot_track(t, xs2)
bp.plot_filter(t, kxs2[:, 0], label='KF')
示例#13
0
def a():
    class ConstantVelocityObject(object):
        def __init__(self, x0=0, vel=1., noise_scale=0.06):
            self.x = x0
            self.vel = vel
            self.noise_scale = noise_scale
        def update(self):
            self.vel += randn() * self.noise_scale
            self.x += self.vel
            return (self.x, self.vel)
            
    def sense(x, noise_scale=1.):
        return x[0] + randn()*noise_scale

    np.random.seed(124)
    obj = ConstantVelocityObject()
    xs, zs = [], []
    for i in range(50):
        x = obj.update()
        z = sense(x)
        xs.append(x)
        zs.append(z)
    xs = np.asarray(xs)
    bp.plot_track(xs[:, 0])
    bp.plot_measurements(range(len(zs)), zs)
    plt.legend(loc='best');
    
    def ZeroOrderKF(R, Q, P=20):
        """ Create zero order Kalman filter.
        Specify R and Q as floats."""
        kf = KalmanFilter(dim_x=1, dim_z=1)
        kf.x = np.array([0.])
        kf.R *= R
        kf.Q *= Q
        kf.P *= P
        kf.F = np.eye(1)
        kf.H = np.eye(1)
        return kf
        
    def FirstOrderKF(R, Q, dt):
        """ Create first order Kalman filter.
        Specify R and Q as floats."""
        kf = KalmanFilter(dim_x=2, dim_z=1)
        kf.x = np.zeros(2)
        kf.P *= np.array([[100, 0], [0, 1]])
        kf.R *= R
        kf.Q = Q_discrete_white_noise(2, dt, Q)
        kf.F = np.array([[1., dt],
        [0., 1]])
        kf.H = np.array([[1., 0]])
        return kf
        
    def SecondOrderKF(R_std, Q, dt, P=100):
        """ Create second order Kalman filter.
        Specify R and Q as floats."""
        kf = KalmanFilter(dim_x=3, dim_z=1)
        kf.x = np.zeros(3)
        kf.P[0, 0] = P
        kf.P[1, 1] = 1
        kf.P[2, 2] = 1
        kf.R *= R_std**2
        kf.Q = Q_discrete_white_noise(3, dt, Q)
        kf.F = np.array([[1., dt, .5*dt*dt],
        [0., 1.,
        dt],
        [0., 0.,
        1.]])
        kf.H = np.array([[1., 0., 0.]])
        return kf
    
    def simulate_system(Q, count):
        obj = ConstantVelocityObject(x0=.0, vel=0.5, noise_scale=Q)
        xs, zs = [], []
        for i in range(count):
            x = obj.update()
            z = sense(x)
            xs.append(x)
            zs.append(z)
        return np.asarray(xs), np.asarray(zs)
        
    def filter_data(kf, zs):
        xs, ps = [], []
        for z in zs:
            kf.predict()
            kf.update(z)
            xs.append(kf.x)
            ps.append(kf.P.diagonal()) # just save variances
        return np.asarray(xs), np.asarray(ps)
        
    def plot_residuals(xs, filter_xs, Ps, title, y_label, stds=1):
        res = xs - filter_xs
        plt.plot(res)
        bp.plot_residual_limits(Ps, stds)
        bp.set_labels(title, 'time (sec)', y_label)
        plt.show()
                
    # 1
    R, Q = 1, 0.03
    xs, zs = simulate_system(Q=Q, count=50)
    kf = FirstOrderKF(R, Q, dt=1)
    filter_xs1, ps1 = filter_data(kf, zs)
    plt.figure()
    bp.plot_kf_output(xs, filter_xs1, zs)
    plot_residuals(xs[:, 0], filter_xs1[:, 0], ps1[:, 0],
                   title='First Order Position Residuals(1$\sigma$)', y_label='meters')
    plot_residuals(xs[:, 1], filter_xs1[:, 1], ps1[:, 1],
        title='First Order Velocity Residuals(1$\sigma$)',
        y_label='meters/sec')
        
    kf0 = ZeroOrderKF(R, Q)
    filter_xs0, ps0 = filter_data(kf0, zs)
    plot_kf_output(xs, filter_xs0, zs)