data1, data2 = n.ma.array(data1), n.ma.array(data2) data = n.multiply(n.conjugate(data1), data2) * norm #data is shaped [timesample, channel] P = n.ma.array([]) for ind in n.arange(len(taulist)): P = n.append(P, n.mean(data.T[ind])) print P #print len(taulist), len(P) #kz = taulist*2*n.pi/Y kz = cosmo_units.eta2kparr(taulist * 1.E-9, z) #This function needs tau in Hz^-1 #print "shapes of arrays:", data1.shape, data2.shape #Bootstrap resampling B = 10 bootmean, booterr = boot_simple.bootstrap(B, data) #plotting fig = p.figure() ax = fig.add_subplot(311) #plotp.P_v_Eta(ax,kz,P) ax.set_xlabel('kz') ax.set_ylabel(r'$P(k) mK^{2} (h^{-1} Mpc)^{3}$') p.plot(kz, P, 'bo') ax.set_yscale('log') ax = fig.add_subplot(312) ax.errorbar(kz, bootmean, yerr=booterr, fmt='ok', ecolor='gray', alpha=0.5) #ax.set_ylim([0,0.5]) ax.set_yscale('log') ax.set_xlabel('kz') ax.set_ylabel(r'$P(k) mK^{2} (h^{-1} Mpc)^{3}$')
#print "data shapes", data1.shape, data2.shape print "Average over %d time points" % len(data1) data1, data2 = n.array(data1), n.array(data2) data = n.multiply(n.conjugate(data1), data2)*norm #data is shaped [timesample, channel] P=[] for ind in n.arange(len(taulist)): P.append(n.mean(data.T[ind])) #print len(taulist), len(P) #kz = taulist*2*n.pi/Y kz = cosmo_units.eta2kparr(taulist*1.E-9,z) #This function needs tau in Hz^-1 #print "shapes of arrays:", data1.shape, data2.shape #Bootstrap resampling B = 100 bootmean, booterr = boot_simple.bootstrap(B, data) #plotting fig = p.figure() ax = fig.add_subplot(311) #plotp.P_v_Eta(ax,kz,P) ax.set_xlabel('kz') ax.set_ylabel(r'$P(k) K^{2} (h^{-1} Mpc)^{3}$') p.plot(kz,P,'bo') ax = fig.add_subplot(312) ax.errorbar(kz, bootmean, yerr=booterr, fmt='ok', ecolor='gray', alpha=0.5) #ax.set_ylim([0,0.5]) #ax.set_yscale('log') ax.set_xlabel('kz') ax.set_ylabel(r'$P(k) K^{2} (h^{-1} Mpc)^{3}$')