def imu_handler(self, channel, data): self.imumsg = ins_t.decode(data) #lRb, self.prtObj.yaw = self.prtObj.propNavIMU(0.01, np.array(self.imumsg.gyro)[:,np.newaxis], np.array(self.imumsg.accel)[:,np.newaxis], yaw=self.prtObj.yaw) self.prtObj.upStateIMU_mod(0.01, np.array(self.imumsg.gyro)[:,np.newaxis], np.array(self.imumsg.accel)[:,np.newaxis]) lRb = self.prtObj.lRb() #self.prtObj.a_prev[:,0] = self.imumsg.accel if self.viconmsg: p = Pose.from_rigid_transform(0, RigidTransform(tvec=self.viconmsg.pos)) # print 'acc', self.imumsg.accel # bRa = self.prtObj.bRa(acc=np.matrix(self.imumsg.accel).T) # lRb = self.prtObj.lRb(np.matrix(self.imumsg.accel).T) bRl = lRb.T rt = RigidTransform.from_Rt(lRb , self.viconmsg.pos) # bRl #print( "R, P, Y, calc_Y: %.3f, %.3f, %.3f, %.3f" % (rt.to_roll_pitch_yaw_x_y_z()[0]*180/np.pi, rt.to_roll_pitch_yaw_x_y_z()[1]*180/np.pi, rt.to_roll_pitch_yaw_x_y_z()[2]*180/np.pi, self.prtObj.yaw*180/np.pi) ) o = Pose.from_rigid_transform(1, rt) # plot accelerometer estimated orientation of IMU publish_pose_list('Localpose', [p], frame_id='origin') publish_pose_list('IMUpose', [o], frame_id='origin') #publish_cloud('particle_imu_max', self.imu_max.T+self.viconmsg.pos, c='b', frame_id='origin') #test magnetometer lMag = self.prtObj.magUpdateYaw_mod(np.array(self.imumsg.mag)[:,np.newaxis]) #lMag = self.prtObj.magUpdateYaw_mod(np.array([[1.0],[0.0],[0.0]])) #lMag /= np.linalg.norm(lMag) #lMag = np.dot(bRl, np.array([[1.0],[0.0],[0.0]])) publish_cloud('mag', np.array(self.imumsg.mag)+self.viconmsg.pos, c='b', frame_id='origin')
def my_handler(self, channel, data): global uts firstpass = False if uts < 1: firstpass = True msg = ins_t.decode(data) dt = (msg.utime - uts)*1e-6 uts = msg.utime if firstpass: return bRi = self.prtObj.bRi acc = np.array(msg.accel)[:,np.newaxis] gyr = np.array(msg.gyro)[:,np.newaxis] acc = np.dot(bRi, acc) gyr = np.dot(bRi, gyr) self.prtObj.yaw = self.prtObj.propNavIMU(dt, gyr, acc, self.prtObj.yaw) self.prtObj.a_prev[:,0:1] = acc aRb = self.prtObj.bRa(acc=np.array(msg.accel)[:,np.newaxis]).T rt = RigidTransform.from_Rt( aRb , [0,0,0]) o = Pose.from_rigid_transform(1, rt) publish_pose_list('aRb', [o], frame_id='origin') lRb = self.prtObj.lRb() rt2 = RigidTransform.from_Rt( lRb , [0,0,0]) o2 = Pose.from_rigid_transform(2, rt2) publish_pose_list('lRb', [o2], frame_id='origin')
def my_handler(self, channel, data): global uts firstpass = False if uts < 1: firstpass = True msg = ins_t.decode(data) dt = (msg.utime - uts) * 1e-6 uts = msg.utime if firstpass: return bRi = self.prtObj.bRi acc = np.array(msg.accel)[:, np.newaxis] gyr = np.array(msg.gyro)[:, np.newaxis] acc = np.dot(bRi, acc) gyr = np.dot(bRi, gyr) self.prtObj.yaw = self.prtObj.propNavIMU(dt, gyr, acc, self.prtObj.yaw) self.prtObj.a_prev[:, 0:1] = acc aRb = self.prtObj.bRa(acc=np.array(msg.accel)[:, np.newaxis]).T rt = RigidTransform.from_Rt(aRb, [0, 0, 0]) o = Pose.from_rigid_transform(1, rt) publish_pose_list('aRb', [o], frame_id='origin') lRb = self.prtObj.lRb() rt2 = RigidTransform.from_Rt(lRb, [0, 0, 0]) o2 = Pose.from_rigid_transform(2, rt2) publish_pose_list('lRb', [o2], frame_id='origin')
def imu_handler(self, channel, data): self.imumsg = ins_t.decode(data) # lRb, self.prtObj.yaw = self.prtObj.propNavIMU(0.01, np.array(self.imumsg.gyro)[:,np.newaxis], np.array(self.imumsg.accel)[:,np.newaxis], yaw=self.prtObj.yaw) self.prtObj.upStateIMU_mod( 0.01, np.array(self.imumsg.gyro)[:, np.newaxis], np.array(self.imumsg.accel)[:, np.newaxis] ) lRb = self.prtObj.lRb() # self.prtObj.a_prev[:,0] = self.imumsg.accel if self.viconmsg: p = Pose.from_rigid_transform(0, RigidTransform(tvec=self.viconmsg.pos)) # print 'acc', self.imumsg.accel # bRa = self.prtObj.bRa(acc=np.matrix(self.imumsg.accel).T) # lRb = self.prtObj.lRb(np.matrix(self.imumsg.accel).T) bRl = lRb.T rt = RigidTransform.from_Rt(lRb, self.viconmsg.pos) # bRl # print( "R, P, Y, calc_Y: %.3f, %.3f, %.3f, %.3f" % (rt.to_roll_pitch_yaw_x_y_z()[0]*180/np.pi, rt.to_roll_pitch_yaw_x_y_z()[1]*180/np.pi, rt.to_roll_pitch_yaw_x_y_z()[2]*180/np.pi, self.prtObj.yaw*180/np.pi) ) o = Pose.from_rigid_transform(1, rt) # plot accelerometer estimated orientation of IMU publish_pose_list("Localpose", [p], frame_id="origin") publish_pose_list("IMUpose", [o], frame_id="origin") # publish_cloud('particle_imu_max', self.imu_max.T+self.viconmsg.pos, c='b', frame_id='origin') # test magnetometer lMag = self.prtObj.magUpdateYaw_mod(np.array(self.imumsg.mag)[:, np.newaxis]) # lMag = self.prtObj.magUpdateYaw_mod(np.array([[1.0],[0.0],[0.0]])) # lMag /= np.linalg.norm(lMag) # lMag = np.dot(bRl, np.array([[1.0],[0.0],[0.0]])) publish_cloud("mag", np.array(self.imumsg.mag) + self.viconmsg.pos, c="b", frame_id="origin")
def drawParticles2d(self, V, frame_id='origin', name='particles', lname='yaw', c=['b'], lc=['r'], ll=0.05): LD = [] if len(V) < 1: print 'drawParticles2d -- no data? skip' return d, N = V[0].shape l = len(V) for v in V: Dv = np.vstack((v[0:2, :], np.zeros((1, N)))).T LD.append(Dv) publish_cloud(name, LD, c=c, frame_id=frame_id) if d > 2: count = -1 DV = np.zeros((d, l * N)) DT = np.zeros((d, l * N)) for v in V: tt = np.zeros((d, N)) for i in range(0, N): t = Pose.from_rigid_transform( 0, RigidTransform(xyzw=Quaternion.from_roll_pitch_yaw( 0, 0, v[2, i]).to_xyzw(), tvec=[v[0, i], v[1, i], 0])) pert = Pose.from_rigid_transform( 0, RigidTransform(tvec=[ll, 0, 0])) tv = (t.oplus(pert)).tvec tt[0:2, i] = tv[0:2] count += 1 DT[0:d, (count * N):((count + 1) * N)] = tt Dv = np.vstack((v[0:2, :], np.zeros((1, N)))) DV[0:d, (count * N):((count + 1) * N)] = Dv publish_line_segments(lname, DV.T, DT.T, c=lc[0], frame_id=frame_id)
def vicon_handler(self,channel, data): self.viconmsg = body_t.decode(data) self.drawParticles(offset=self.viconmsg.pos) # plot true orientation of IMU via vicon vicon_orient = self.viconmsg.orientation w = vicon_orient[0] x = vicon_orient[1] y = vicon_orient[2] z = vicon_orient[3] # quaternion to rotation matrix wRv = np.zeros([3,3],dtype=np.double) wRv[0,0] = 1 - 2*y**2 - 2*z**2 wRv[0,1] = 2*x*y - 2*z*w wRv[0,2] = 2*x*z + 2*y*w wRv[1,0] = 2*x*y + 2*z*w wRv[1,1] = 1 - 2*x**2 - 2*z**2 wRv[1,2] = 2*y*z - 2*x*w wRv[2,0] = 2*x*z - 2*y*w wRv[2,1] = 2*y*z + 2*x*w wRv[2,2] = 1 - 2*x**2 - 2*y**2 # rotational transformation between microstrain and vicon (collocated) vRm = np.zeros([3,3],dtype=np.double) vRm[0,0] = 0.747293477674224 vRm[0,1] = 0.663765523047521 vRm[0,2] = 0.031109301487093 vRm[1,0] = 0.663949387400485 vRm[1,1] = -0.747757418253684 vRm[1,2] = 0.005482190903960 vRm[2,0] = 0.026901100276478 vRm[2,1] = 0.016558196158918 vRm[2,2] = -0.999500953948458 wRm = np.dot(wRv, vRm) self.vicon_lRb = wRm p = Pose.from_rigid_transform(2, RigidTransform.from_Rt(wRm,self.viconmsg.pos)) publish_pose_list('VICONpose', [p], frame_id='origin') #drawing true max as point in new image and in local frame if self.imumsg != None: im2 = np.zeros([180,360]) PV = np.array([[30],[30],[4]]) - np.array(self.viconmsg.pos)[:,np.newaxis] self.vicon_max = PV/(np.linalg.norm(PV)) publish_cloud('particle_vicon_max', self.vicon_max.T+self.viconmsg.pos, c='g', frame_id='origin') # lRb_val = self.prtObj.lRb() # bRl_val = lRb_val.T # dot_prod = np.dot(bRl_val, self.vicon_max) # use IMU local-to-body transform dot_prod = np.dot(self.vicon_lRb.T, self.vicon_max) # use vicon local-to-body transform az_el = self.prtObj.peRb_pt(dot_prod) if az_el[0] < 0: az_el[0] = az_el[0]+2*np.pi # print az_el*180/np.pi self.gen_heatmap(az_el[0], az_el[1]) cv2.circle(im2, (int(az_el[0]*180/np.pi),int(az_el[1]*180/np.pi)), 5, (255,0,0)) cv2.imshow('img2', im2) cv2.waitKey(1)
def vicon_handler(self, channel, data): self.viconmsg = body_t.decode(data) self.drawParticles(offset=self.viconmsg.pos) # plot true orientation of IMU via vicon vicon_orient = self.viconmsg.orientation w = vicon_orient[0] x = vicon_orient[1] y = vicon_orient[2] z = vicon_orient[3] # quaternion to rotation matrix wRv = np.zeros([3, 3], dtype=np.double) wRv[0, 0] = 1 - 2 * y ** 2 - 2 * z ** 2 wRv[0, 1] = 2 * x * y - 2 * z * w wRv[0, 2] = 2 * x * z + 2 * y * w wRv[1, 0] = 2 * x * y + 2 * z * w wRv[1, 1] = 1 - 2 * x ** 2 - 2 * z ** 2 wRv[1, 2] = 2 * y * z - 2 * x * w wRv[2, 0] = 2 * x * z - 2 * y * w wRv[2, 1] = 2 * y * z + 2 * x * w wRv[2, 2] = 1 - 2 * x ** 2 - 2 * y ** 2 # rotational transformation between microstrain and vicon (collocated) vRm = np.zeros([3, 3], dtype=np.double) vRm[0, 0] = 0.747293477674224 vRm[0, 1] = 0.663765523047521 vRm[0, 2] = 0.031109301487093 vRm[1, 0] = 0.663949387400485 vRm[1, 1] = -0.747757418253684 vRm[1, 2] = 0.005482190903960 vRm[2, 0] = 0.026901100276478 vRm[2, 1] = 0.016558196158918 vRm[2, 2] = -0.999500953948458 wRm = np.dot(wRv, vRm) self.vicon_lRb = wRm p = Pose.from_rigid_transform(2, RigidTransform.from_Rt(wRm, self.viconmsg.pos)) publish_pose_list("VICONpose", [p], frame_id="origin") # drawing true max as point in new image and in local frame if self.imumsg != None: im2 = np.zeros([180, 360]) PV = np.array([[30], [30], [4]]) - np.array(self.viconmsg.pos)[:, np.newaxis] self.vicon_max = PV / (np.linalg.norm(PV)) publish_cloud("particle_vicon_max", self.vicon_max.T + self.viconmsg.pos, c="g", frame_id="origin") # lRb_val = self.prtObj.lRb() # bRl_val = lRb_val.T # dot_prod = np.dot(bRl_val, self.vicon_max) # use IMU local-to-body transform dot_prod = np.dot(self.vicon_lRb.T, self.vicon_max) # use vicon local-to-body transform az_el = self.prtObj.peRb_pt(dot_prod) if az_el[0] < 0: az_el[0] = az_el[0] + 2 * np.pi # print az_el*180/np.pi self.gen_heatmap(az_el[0], az_el[1]) cv2.circle(im2, (int(az_el[0] * 180 / np.pi), int(az_el[1] * 180 / np.pi)), 5, (255, 0, 0)) cv2.imshow("img2", im2) cv2.waitKey(1)