示例#1
0
    def test_q_upper_confidence_bound(self):
        for dtype in (torch.float, torch.double):
            # the event shape is `b x q x t` = 1 x 1 x 1
            samples = torch.zeros(1, 1, 1, device=self.device, dtype=dtype)
            mm = MockModel(MockPosterior(samples=samples))
            # X is `q x d` = 1 x 1. X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, device=self.device, dtype=dtype)

            # basic test
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # basic test, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            res = acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))

            # basic test for X_pending and warning
            acqf.set_X_pending()
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(None)
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(X)
            self.assertEqual(acqf.X_pending, X)
            res = acqf(X)
            X2 = torch.zeros(
                1, 1, 1, device=self.device, dtype=dtype, requires_grad=True
            )
            with warnings.catch_warnings(record=True) as ws, settings.debug(True):
                acqf.set_X_pending(X2)
                self.assertEqual(acqf.X_pending, X2)
                self.assertEqual(len(ws), 1)
                self.assertTrue(issubclass(ws[-1].category, BotorchWarning))
示例#2
0
    def test_q_upper_confidence_bound(self, cuda=False):
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            # the event shape is `b x q x t` = 1 x 1 x 1
            samples = torch.zeros(1, 1, 1, device=device, dtype=dtype)
            mm = MockModel(MockPosterior(samples=samples))
            # X is `q x d` = 1 x 1. X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, device=device, dtype=dtype)

            # basic test
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # basic test, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            res = acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
示例#3
0
    def test_q_upper_confidence_bound(self, cuda=False):
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            # the event shape is `b x q x t` = 1 x 1 x 1
            samples = torch.zeros(1, 1, 1, device=device, dtype=dtype)
            mm = MockModel(MockPosterior(samples=samples))
            # X is `q x d` = 1 x 1. X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, device=device, dtype=dtype)

            # basic test
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # basic test, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            res = acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
示例#4
0
    def test_acquisition_functions(self):
        tkwargs = {"device": self.device, "dtype": torch.double}
        train_X, train_Y, train_Yvar, model = self._get_data_and_model(
            infer_noise=True, **tkwargs
        )
        fit_fully_bayesian_model_nuts(
            model, warmup_steps=8, num_samples=5, thinning=2, disable_progbar=True
        )
        sampler = IIDNormalSampler(num_samples=2)
        acquisition_functions = [
            ExpectedImprovement(model=model, best_f=train_Y.max()),
            ProbabilityOfImprovement(model=model, best_f=train_Y.max()),
            PosteriorMean(model=model),
            UpperConfidenceBound(model=model, beta=4),
            qExpectedImprovement(model=model, best_f=train_Y.max(), sampler=sampler),
            qNoisyExpectedImprovement(model=model, X_baseline=train_X, sampler=sampler),
            qProbabilityOfImprovement(
                model=model, best_f=train_Y.max(), sampler=sampler
            ),
            qSimpleRegret(model=model, sampler=sampler),
            qUpperConfidenceBound(model=model, beta=4, sampler=sampler),
            qNoisyExpectedHypervolumeImprovement(
                model=ModelListGP(model, model),
                X_baseline=train_X,
                ref_point=torch.zeros(2, **tkwargs),
                sampler=sampler,
            ),
            qExpectedHypervolumeImprovement(
                model=ModelListGP(model, model),
                ref_point=torch.zeros(2, **tkwargs),
                sampler=sampler,
                partitioning=NondominatedPartitioning(
                    ref_point=torch.zeros(2, **tkwargs), Y=train_Y.repeat([1, 2])
                ),
            ),
        ]

        for acqf in acquisition_functions:
            for batch_shape in [[5], [6, 5, 2]]:
                test_X = torch.rand(*batch_shape, 1, 4, **tkwargs)
                self.assertEqual(acqf(test_X).shape, torch.Size(batch_shape))
示例#5
0
def get_acquisition_function(
    acquisition_function_name: str,
    model: Model,
    objective: MCAcquisitionObjective,
    X_observed: Tensor,
    X_pending: Optional[Tensor] = None,
    mc_samples: int = 500,
    qmc: bool = True,
    seed: Optional[int] = None,
    **kwargs,
) -> monte_carlo.MCAcquisitionFunction:
    r"""Convenience function for initializing botorch acquisition functions.

    Args:
        acquisition_function_name: Name of the acquisition function.
        model: A fitted model.
        objective: A MCAcquisitionObjective.
        X_observed: A `m1 x d`-dim Tensor of `m1` design points that have
            already been observed.
        X_pending: A `m2 x d`-dim Tensor of `m2` design points whose evaluation
            is pending.
        mc_samples: The number of samples to use for (q)MC evaluation of the
            acquisition function.
        qmc: If True, use quasi-Monte-Carlo sampling (instead of iid).
        seed: If provided, perform deterministic optimization (i.e. the
            function to optimize is fixed and not stochastic).

    Returns:
        The requested acquisition function.

    Example:
        >>> model = SingleTaskGP(train_X, train_Y)
        >>> obj = LinearMCObjective(weights=torch.tensor([1.0, 2.0]))
        >>> acqf = get_acquisition_function("qEI", model, obj, train_X)
    """
    # initialize the sampler
    if qmc:
        sampler = SobolQMCNormalSampler(num_samples=mc_samples, seed=seed)
    else:
        sampler = IIDNormalSampler(num_samples=mc_samples, seed=seed)
    # instantiate and return the requested acquisition function
    if acquisition_function_name == "qEI":
        best_f = objective(model.posterior(X_observed).mean).max().item()
        return monte_carlo.qExpectedImprovement(
            model=model,
            best_f=best_f,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
        )
    elif acquisition_function_name == "qPI":
        best_f = objective(model.posterior(X_observed).mean).max().item()
        return monte_carlo.qProbabilityOfImprovement(
            model=model,
            best_f=best_f,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
            tau=kwargs.get("tau", 1e-3),
        )
    elif acquisition_function_name == "qNEI":
        return monte_carlo.qNoisyExpectedImprovement(
            model=model,
            X_baseline=X_observed,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
            prune_baseline=kwargs.get("prune_baseline", False),
        )
    elif acquisition_function_name == "qSR":
        return monte_carlo.qSimpleRegret(model=model,
                                         sampler=sampler,
                                         objective=objective,
                                         X_pending=X_pending)
    elif acquisition_function_name == "qUCB":
        if "beta" not in kwargs:
            raise ValueError("`beta` must be specified in kwargs for qUCB.")
        return monte_carlo.qUpperConfidenceBound(
            model=model,
            beta=kwargs["beta"],
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
        )
    raise NotImplementedError(
        f"Unknown acquisition function {acquisition_function_name}")
示例#6
0
文件: utils.py 项目: mcx/botorch
def get_acquisition_function(
    acquisition_function_name: str,
    model: Model,
    objective: MCAcquisitionObjective,
    X_observed: Tensor,
    X_pending: Optional[Tensor] = None,
    constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
    mc_samples: int = 500,
    qmc: bool = True,
    seed: Optional[int] = None,
    **kwargs,
) -> monte_carlo.MCAcquisitionFunction:
    r"""Convenience function for initializing botorch acquisition functions.

    Args:
        acquisition_function_name: Name of the acquisition function.
        model: A fitted model.
        objective: A MCAcquisitionObjective.
        X_observed: A `m1 x d`-dim Tensor of `m1` design points that have
            already been observed.
        X_pending: A `m2 x d`-dim Tensor of `m2` design points whose evaluation
            is pending.
        constraints: A list of callables, each mapping a Tensor of dimension
            `sample_shape x batch-shape x q x m` to a Tensor of dimension
            `sample_shape x batch-shape x q`, where negative values imply
            feasibility. Used when constraint_transforms are not passed
            as part of the objective.
        mc_samples: The number of samples to use for (q)MC evaluation of the
            acquisition function.
        qmc: If True, use quasi-Monte-Carlo sampling (instead of iid).
        seed: If provided, perform deterministic optimization (i.e. the
            function to optimize is fixed and not stochastic).

    Returns:
        The requested acquisition function.

    Example:
        >>> model = SingleTaskGP(train_X, train_Y)
        >>> obj = LinearMCObjective(weights=torch.tensor([1.0, 2.0]))
        >>> acqf = get_acquisition_function("qEI", model, obj, train_X)
    """
    # initialize the sampler
    if qmc:
        sampler = SobolQMCNormalSampler(num_samples=mc_samples, seed=seed)
    else:
        sampler = IIDNormalSampler(num_samples=mc_samples, seed=seed)
    # instantiate and return the requested acquisition function
    if acquisition_function_name == "qEI":
        best_f = objective(model.posterior(X_observed).mean).max().item()
        return monte_carlo.qExpectedImprovement(
            model=model,
            best_f=best_f,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
        )
    elif acquisition_function_name == "qPI":
        best_f = objective(model.posterior(X_observed).mean).max().item()
        return monte_carlo.qProbabilityOfImprovement(
            model=model,
            best_f=best_f,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
            tau=kwargs.get("tau", 1e-3),
        )
    elif acquisition_function_name == "qNEI":
        return monte_carlo.qNoisyExpectedImprovement(
            model=model,
            X_baseline=X_observed,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
            prune_baseline=kwargs.get("prune_baseline", False),
        )
    elif acquisition_function_name == "qSR":
        return monte_carlo.qSimpleRegret(model=model,
                                         sampler=sampler,
                                         objective=objective,
                                         X_pending=X_pending)
    elif acquisition_function_name == "qUCB":
        if "beta" not in kwargs:
            raise ValueError("`beta` must be specified in kwargs for qUCB.")
        return monte_carlo.qUpperConfidenceBound(
            model=model,
            beta=kwargs["beta"],
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
        )
    elif acquisition_function_name == "qEHVI":
        # pyre-fixme [16]: `Model` has no attribute `train_targets`
        try:
            ref_point = kwargs["ref_point"]
        except KeyError:
            raise ValueError(
                "`ref_point` must be specified in kwargs for qEHVI")
        try:
            Y = kwargs["Y"]
        except KeyError:
            raise ValueError("`Y` must be specified in kwargs for qEHVI")
        # get feasible points
        if constraints is not None:
            feas = torch.stack([c(Y) <= 0 for c in constraints],
                               dim=-1).all(dim=-1)
            Y = Y[feas]
        obj = objective(Y)
        partitioning = NondominatedPartitioning(
            ref_point=torch.as_tensor(ref_point,
                                      dtype=Y.dtype,
                                      device=Y.device),
            Y=obj,
            alpha=kwargs.get("alpha", 0.0),
        )
        return moo_monte_carlo.qExpectedHypervolumeImprovement(
            model=model,
            ref_point=ref_point,
            partitioning=partitioning,
            sampler=sampler,
            objective=objective,
            constraints=constraints,
            X_pending=X_pending,
        )
    raise NotImplementedError(
        f"Unknown acquisition function {acquisition_function_name}")
示例#7
0
    def test_q_upper_confidence_bound_batch(self):
        # TODO: T41739913 Implement tests for all MCAcquisitionFunctions
        for dtype in (torch.float, torch.double):
            samples = torch.zeros(2, 2, 1, device=self.device, dtype=dtype)
            samples[0, 0, 0] = 1.0
            mm = MockModel(MockPosterior(samples=samples))
            # X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, 1, device=self.device, dtype=dtype)

            # test batch mode
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)

            # test batch mode, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))

            # basic test for X_pending and warning
            acqf.set_X_pending()
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(None)
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(X)
            self.assertEqual(acqf.X_pending, X)
            res = acqf(X)
            X2 = torch.zeros(
                1, 1, 1, device=self.device, dtype=dtype, requires_grad=True
            )
            with warnings.catch_warnings(record=True) as ws, settings.debug(True):
                acqf.set_X_pending(X2)
                self.assertEqual(acqf.X_pending, X2)
                self.assertEqual(len(ws), 1)
                self.assertTrue(issubclass(ws[-1].category, BotorchWarning))
示例#8
0
# model.likelihood.noise_covar.register_constraint("raw_noise", GreaterThan(1e1))

for it in range(25):
  t0 = time.time()

  # Negate the first element of the objective, since botorch maximizes.
  objective = ScalarizedObjective(torch.tensor([-1.0] + [0.0] * dim_basis))

  # q: number of candidates.
  q = 10

  # candidate_x has shape (q, dim_basis)
  t1 = time.time()
  candidate_x, acq_value = optimize_acqf(
      # UpperConfidenceBound(model, beta=0.1, objective=objective),
      qUpperConfidenceBound(model, beta=0.1, objective=objective),
      bounds=torch.Tensor([[-1] * dim_basis, [1] * dim_basis]),
      q=q,
      # Not sure why these are necessary:
      num_restarts=1,
      raw_samples=1,
  )
  print(f"optimize_acqf took {time.time()-t1} secs")

  # Evaluate candidate point.
  candidate_y = jax_to_torch([loss_and_grad(torch_to_jax(candidate_x[i, :])) for i in range(q)])
  train_x = torch.cat([train_x, candidate_x])
  train_y = torch.cat([train_y, candidate_y])

  # This is currently an error "Cannot yet add fantasy observations to multitask GPs, but this is coming soon!"
  # model = model.condition_on_observations(X=candidate_x, Y=candidate_y)
示例#9
0
    def test_q_upper_confidence_bound_batch(self, cuda=False):
        # TODO: T41739913 Implement tests for all MCAcquisitionFunctions
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            samples = torch.zeros(2, 2, 1, device=device, dtype=dtype)
            samples[0, 0, 0] = 1.0
            mm = MockModel(MockPosterior(samples=samples))
            # X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, 1, device=device, dtype=dtype)

            # test batch mode
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)

            # test batch mode, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
示例#10
0
    def test_q_upper_confidence_bound_batch(self, cuda=False):
        # TODO: T41739913 Implement tests for all MCAcquisitionFunctions
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            samples = torch.zeros(2, 2, 1, device=device, dtype=dtype)
            samples[0, 0, 0] = 1.0
            mm = MockModel(MockPosterior(samples=samples))
            # X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, 1, device=device, dtype=dtype)

            # test batch mode
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)

            # test batch mode, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))