示例#1
0
 def test_fit_gpytorch_model_singular(self):
     options = {"disp": False, "maxiter": 5}
     for dtype in (torch.float, torch.double):
         X_train = torch.ones(2, 2, device=self.device, dtype=dtype)
         Y_train = torch.zeros(2, 1, device=self.device, dtype=dtype)
         test_likelihood = GaussianLikelihood(
             noise_constraint=GreaterThan(-1e-7, transform=None, initial_value=0.0)
         )
         gp = SingleTaskGP(X_train, Y_train, likelihood=test_likelihood)
         mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
         mll.to(device=self.device, dtype=dtype)
         # this will do multiple retries (and emit warnings, which is desired)
         with warnings.catch_warnings(record=True) as ws, settings.debug(True):
             fit_gpytorch_model(mll, options=options, max_retries=2)
             self.assertTrue(
                 any(issubclass(w.category, NumericalWarning) for w in ws)
             )
         # ensure that we fail if noise ensures that jitter does not help
         gp.likelihood = GaussianLikelihood(
             noise_constraint=Interval(-2, -1, transform=None, initial_value=-1.5)
         )
         mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
         mll.to(device=self.device, dtype=dtype)
         with self.assertRaises(NotPSDError):
             fit_gpytorch_model(mll, options=options, max_retries=2)
         # ensure we can handle NaNErrors in the optimizer
         with mock.patch.object(SingleTaskGP, "__call__", side_effect=NanError):
             gp = SingleTaskGP(X_train, Y_train, likelihood=test_likelihood)
             mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
             mll.to(device=self.device, dtype=dtype)
             fit_gpytorch_model(
                 mll, options={"disp": False, "maxiter": 1}, max_retries=1
             )
示例#2
0
    def test_fit_gpytorch_model_singular(self):
        options = {"disp": False, "maxiter": 5}
        for dtype in (torch.float, torch.double):
            X_train = torch.ones(2, 2, device=self.device, dtype=dtype)
            Y_train = torch.zeros(2, 1, device=self.device, dtype=dtype)
            test_likelihood = GaussianLikelihood(
                noise_constraint=GreaterThan(-1e-7, transform=None, initial_value=0.0)
            )
            gp = SingleTaskGP(X_train, Y_train, likelihood=test_likelihood)
            mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
            mll.to(device=self.device, dtype=dtype)
            # this will do multiple retries (and emit warnings, which is desired)
            with warnings.catch_warnings(record=True) as ws, settings.debug(True):
                fit_gpytorch_model(mll, options=options, max_retries=2)
                self.assertTrue(
                    any(issubclass(w.category, NumericalWarning) for w in ws)
                )
            # ensure that we fail if noise ensures that jitter does not help
            gp.likelihood = GaussianLikelihood(
                noise_constraint=Interval(-2, -1, transform=None, initial_value=-1.5)
            )
            mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
            mll.to(device=self.device, dtype=dtype)
            with self.assertLogs(level="DEBUG") as logs:
                fit_gpytorch_model(mll, options=options, max_retries=2)
            self.assertTrue(any("NotPSDError" in log for log in logs.output))
            # ensure we can handle NaNErrors in the optimizer
            with mock.patch.object(SingleTaskGP, "__call__", side_effect=NanError):
                gp = SingleTaskGP(X_train, Y_train, likelihood=test_likelihood)
                mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
                mll.to(device=self.device, dtype=dtype)
                fit_gpytorch_model(
                    mll, options={"disp": False, "maxiter": 1}, max_retries=1
                )
            # ensure we catch NotPSDErrors
            with mock.patch.object(SingleTaskGP, "__call__", side_effect=NotPSDError):
                mll = self._getModel()
                with self.assertLogs(level="DEBUG") as logs:
                    fit_gpytorch_model(mll, max_retries=2)
                for retry in [1, 2]:
                    self.assertTrue(
                        any(
                            f"Fitting failed on try {retry} due to a NotPSDError."
                            in log
                            for log in logs.output
                        )
                    )

            # Failure due to optimization warning

            def optimize_w_warning(mll, **kwargs):
                warnings.warn("Dummy warning.", OptimizationWarning)
                return mll, None

            mll = self._getModel()
            with self.assertLogs(level="DEBUG") as logs, settings.debug(True):
                fit_gpytorch_model(mll, optimizer=optimize_w_warning, max_retries=2)
            self.assertTrue(
                any("Fitting failed on try 1." in log for log in logs.output)
            )