def test_batch_eval_neg_aug_rosenbrock(self, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") for dtype in (torch.float, torch.double): X = torch.zeros(2, 4, device=device, dtype=dtype) res = neg_aug_rosenbrock(X) self.assertEqual(res.dtype, dtype) self.assertEqual(res.device.type, device.type) self.assertEqual(res.shape, torch.Size([2]))
def test_neg_aug_rosenbrock_global_maximum(self, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") for dtype in (torch.float, torch.double): X = torch.tensor( GLOBAL_MAXIMIZER * DIMENSION, device=device, dtype=dtype, requires_grad=True, ) res = neg_aug_rosenbrock(X) self.assertAlmostEqual(res.item(), GLOBAL_MAXIMUM, places=4) grad = torch.autograd.grad(res.sum(), X)[0] self.assertLess(grad.abs().max().item(), 1e-4)