示例#1
0
def int_y( var, mesh, loop=None, nosmooth=None, simple=None):
    
    nr=0
    if loop!=None : nr=1

    f = copy.deepcopy(var)
      
    s = numpy.shape(var)
    nx = s[0]
    loop = numpy.zeros(nx)
      
    status = gen_surface(mesh=mesh) # Start generator
    
    while True:
        
        period, yi, xi, last = gen_surface(period=None, last=None, xi=None )

        f[xi,yi] = int_func(var[xi,yi], simple=simple)
                
        if nosmooth==None :
            print('no smooth yet')
            #f[xi,yi] = SMOOTH(SMOOTH(f[xi,yi], 5, /edge_truncate), 5, /edge_truncate)
          
        loop[xi] = f[xi,yi[numpy.size(yi)-1]] - f[xi,yi[0]]
        
        if last == 1 : break
                   
    if nr == 1 :   
            return f, loop  
    else:
        return f
示例#2
0
def int_y(var, mesh, loop=None, nosmooth=None, simple=None):

    nr = 0
    if loop != None: nr = 1

    f = copy.deepcopy(var)

    s = numpy.shape(var)
    nx = s[0]
    loop = numpy.zeros(nx)

    status = gen_surface(mesh=mesh)  # Start generator

    while True:

        period, yi, xi, last = gen_surface(period=None, last=None, xi=None)

        f[xi, yi] = int_func(var[xi, yi], simple=simple)

        if nosmooth == None:
            print('no smooth yet')
            #f[xi,yi] = SMOOTH(SMOOTH(f[xi,yi], 5, /edge_truncate), 5, /edge_truncate)

        loop[xi] = f[xi, yi[numpy.size(yi) - 1]] - f[xi, yi[0]]

        if last == 1: break

    if nr == 1:
        return f, loop
    else:
        return f
示例#3
0
def process_grid( rz_grid, mesh, output=None, poorquality=None, 
                  gui=None, parent=None, reverse_bt=None,  
                  curv=None, smoothpressure=None,  
                  smoothhthe=None, smoothcurv=None,  
                  settings=None):
  
    if settings==None :
        # Create an empty structure
        settings = Bunch(dummy=0)
     
    # Check settings
        settings.calcp= -1
        settings.calcbt= -1
        settings.calchthe= -1
        settings.calcjpar= -1
  
   # ;CATCH, err
   # ;IF err NE 0 THEN BEGIN
   # ;  PRINT, "PROCESS_GRID failed"
  	#;  PRINT, "   Error message: "+!ERROR_STATE.MSG
   # ;  CATCH, /cancel
   # ;  RETURN
   # ;ENDIF

    MU = 4.e-7*numpy.pi

    poorquality = 0

    if output==None : output="bout.grd.nc"
  
    # Size of the mesh
    nx = numpy.int(numpy.sum(mesh.nrad))
    ny = numpy.int(numpy.sum(mesh.npol))

    # Find the midplane
    ymid = 0
    status = gen_surface(mesh=mesh) # Start generator
     
    while True:
        period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
        if period :
            rm = numpy.max(mesh.Rxy[xi,yi])
            ymidindx = numpy.argmax(mesh.Rxy[xi,yi])
            ymid = yi[ymidindx]
            break
         
        if last==1: break
  

    Rxy = numpy.asarray(mesh.Rxy)
    Zxy = numpy.asarray(mesh.Zxy)
    psixy = mesh.psixy*mesh.fnorm + mesh.faxis # Non-normalised psi

    pressure = numpy.zeros((nx, ny))
    
    
 
    # Use splines to interpolate pressure profile
    status = gen_surface(mesh=mesh) # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)
        if period :
            # Pressure only given on core surfaces
           # pressure[xi,yi] = SPLINE(rz_grid.npsigrid, rz_grid.pres, mesh.psixy[xi,yi[0]], /double)
            sol=interpolate.UnivariateSpline(rz_grid.npsigrid, rz_grid.pres,s=1)
            pressure[xi,yi] =sol(mesh.psixy[xi,yi[0]])

        else:

            pressure[xi,yi] = rz_grid.pres[numpy.size(rz_grid.pres)-1]

        if last==1 : break
        
  
    # Add a minimum amount
    if numpy.min(pressure) < 1.0e-2*numpy.max(pressure) :
        print("****Minimum pressure is very small:", numpy.min(pressure))
        print("****Setting minimum pressure to 1% of maximum")
        pressure = pressure + 1e-2*numpy.max(pressure)
         
  
    if smoothpressure != None :
        p0 = pressure[:,ymid] # Keep initial pressure for comparison
        while True :
            #!P.multi=[0,0,2,0,0]
            fig=figure()
            plot( p0, xtitle="X index", ytitle="pressure at y="+numpy.strip(numpy.str(ymid),2)+" dashed=original", color=1, lines=1)
            plot( pressure[:,ymid], color=1)
            plot( deriv(p0), xtitle="X index", ytitle="DERIV(pressure)", color=1, lines=1)
            plot( deriv(pressure[:,ymid]), color=1 )
            sm = query_yes_no("Smooth pressure profile?")#, gui=gui, dialog_parent=parent)
            if sm :
                # Smooth the pressure profile
        
                p2 = pressure
                for i in range (6) :
                    status = gen_surface(mesh=mesh) # Start generator
                    while True :
                        # Get the next domain
                        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)
            
                        if (xi > 0) and (xi < (nx-1)) :
                            for j in range (numpy.size(yi)) :
                                p2[xi,yi[j]] = ( 0.5*pressure[xi,yi[j]] +  
                                                0.25*(pressure[xi-1,yi[j]] + pressure[xi+1,yi[j]]) 
                                                )
                             
                         
            
                        # Make sure it's still constant on flux surfaces
                        p2[xi,yi] = numpy.mean(p2[xi,yi])
                        if last != None : break
                    pressure = p2
                 
             
            if sm == 0 : break
     

    if numpy.min(pressure) < 0.0 :
        print("")
        print("============= WARNING ==============")
        print("Poor quality equilibrium: Pressure is negative")
        print("")
        poorquality = 1
     
  
    dpdpsi = DDX(psixy, pressure)
    
    
    #;IF MAX(dpdpsi)*mesh.fnorm GT 0.0 THEN BEGIN
    #;  PRINT, ""
    #;  PRINT, "============= WARNING =============="
    #;  PRINT, "Poor quality equilibrium: Pressure is increasing radially"
    #;  PRINT, ""
    #;  poorquality = 1
    #;ENDIF

    # Grid spacing
    dx = numpy.zeros((nx, ny))
    for y in range (ny) : 
        dx[0:(nx-1),y] = psixy[1::,y] - psixy[0:(nx-1),y]
        dx[nx-1,y] = dx[nx-2,y]
     
  
    # Sign
    bpsign = 1.
    xcoord = psixy
    if numpy.min(dx) < 0. :
        bpsign = -1.
        dx = -dx # dx always positive
        xcoord = -xcoord
     

    dtheta = 2.*numpy.pi / numpy.float(ny)
    dy = numpy.zeros((nx, ny)) + dtheta
     
    
    # B field components
    # Following signs mean that psi increasing outwards from
    # core to edge results in Bp clockwise in the poloidal plane
    # i.e. in the positive Grad Theta direction.
  
    Brxy = old_div(mesh.dpsidZ, Rxy)
    Bzxy = old_div(-mesh.dpsidR, Rxy)
    Bpxy = numpy.sqrt(Brxy**2 + Bzxy**2)
    

    # Determine direction (dot B with grad y vector)
  
    dot = ( Brxy[0,ymid]*(Rxy[0,ymid+1] - Rxy[0,ymid-1]) + 
            Bzxy[0,ymid]*(Zxy[0,ymid+1] - Zxy[0,ymid-1])
            ) 
  
    if dot < 0. :
        print("**** Poloidal field is in opposite direction to Grad Theta -> Bp negative")
        Bpxy = -Bpxy
        if bpsign > 0 : sys.exit() # Should be negative
        bpsign = -1.0
    else:
        if bpsign < 0 : sys.exit() # Should be positive
        bpsign = 1.
     

  # Get toroidal field from poloidal current function fpol
    Btxy = numpy.zeros((nx, ny))
    fprime = numpy.zeros((nx, ny))
    fp = deriv(rz_grid.npsigrid*(rz_grid.sibdry - rz_grid.simagx), rz_grid.fpol)
    
    
    status = gen_surface(mesh=mesh) # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=period, xi=xi)

        if period :
            # In the core
            #fpol = numpy.interp(rz_grid.fpol, rz_grid.npsigrid, mesh.psixy[xi,yi], /spline)
                        
            sol=interpolate.UnivariateSpline(rz_grid.npsigrid, rz_grid.fpol,s=1)
         #  fpol = SPLINE(rz_grid.npsigrid, rz_grid.fpol, mesh.psixy[xi,yi[0]], 'double')
            fpol = sol(mesh.psixy[xi,yi[0]])
            
            sol=interpolate.UnivariateSpline(rz_grid.npsigrid, fp ,s=1)
           # fprime[xi,yi] = SPLINE(rz_grid.npsigrid, fp, mesh.psixy[xi,yi[0]], 'double')
            fprime[xi,yi] = sol(mesh.psixy[xi,yi[0]])
            
        else:
            # Outside core. Could be PF or SOL
            fpol = rz_grid.fpol[numpy.size(rz_grid.fpol)-1]
            fprime[xi,yi] = 0.
         
        Btxy[xi,yi] = old_div(fpol, Rxy[xi,yi])
        
        if last ==1 : break
  
    # Total B field
    Bxy = numpy.sqrt(Btxy**2 + Bpxy**2)
    

  #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  # Go through the domains to get a starting estimate
  # of hthe
    hthe = numpy.zeros((nx, ny))

  #   Pick a midplane index
    status = gen_surface(mesh=mesh) # Start generator
    while True:
    # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)
    
        if period :
      # In the core
            rmax = numpy.argmax(Rxy[xi,yi])
            ymidplane = yi[rmax]
            break
     
        if last == 1: break

    status = gen_surface(mesh=mesh) # Start generator
    while True:
    # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)
    
        n = numpy.size(yi)
    
        # Get distance along this line
    
        if period :
             
            # Periodic, so can use FFT
            #drdi = REAL_PART(fft_deriv(Rxy[xi, yi]))
            #dzdi = REAL_PART(fft_deriv(Zxy[xi, yi]))
            line=numpy.append(Rxy[xi,yi[n-1::]], Rxy[xi,yi])  
            line=numpy.append(line,Rxy[xi,yi[0:1]])
           
            drdi = deriv(line)[1:n+1]
            
            line=numpy.append(Zxy[xi,yi[n-1::]], Zxy[xi,yi])  
            line=numpy.append(line,Zxy[xi,yi[0:1]])
                              
            dzdi = deriv(line)[1:n+1]
        else:
        # Non-periodic
            drdi = numpy.gradient(Rxy[xi, yi])
            dzdi = numpy.gradient(Zxy[xi, yi])
     
    
        dldi = numpy.sqrt(drdi**2 + dzdi**2)
    
            
        if 0 :

        # Need to smooth to get sensible results
            if period :
                n = numpy.size(dldi)
                line=numpy.append(dldi[(n-2)::], dldi) # once
                line=numpy.append(line,dldi[0:2])
                dldi = SMOOTH(line, 5)[4:(n+4)]
                
                line=numpy.append(dldi[(n-2)::], dldi) #twice
                line=numpy.append(line,dldi[0:2])
                dldi = SMOOTH(line, 5)[4:(n+4)]
                
                line=numpy.append(dldi[(n-2)::], dldi) # three
                line=numpy.append(line,dldi[0:2])
                dldi = SMOOTH(line, 5)[4:(n+4)]
                
            else:
                line = dldi
                dldi = SMOOTH(line, 5)[2:n+2]
                line = dldi
                dldi = SMOOTH(line, 5)[2:n+2]
                line = dldi
                dldi = SMOOTH(dldi, 5)[2:n+2]
        
    
        hthe[xi, yi] = old_div(dldi, dtheta) # First estimate of hthe
    
        # Get outboard midplane
        if period and xi == 0 :
            m = numpy.argmax(Rxy[0,yi])
            ymidplane = yi[m]
         
        if last == 1 : break

    print("Midplane index ", ymidplane)

    fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, hthe, pressure)
    print("Force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)))

    

    
  #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  # Correct pressure using hthe
  
    print("Calculating pressure profile from force balance")

    try:

    # Calculate force balance
        dpdx = old_div(( -Bpxy*DDX(xcoord, Bpxy * hthe) - Btxy*hthe*DDX(xcoord, Btxy) - (Btxy*Btxy*hthe/Rxy)*DDX(xcoord, Rxy) ), (MU*hthe))
    
        # Surface average
        dpdx2 = surface_average(dpdx, mesh)
        
        pres = numpy.zeros((nx, ny))
        # Integrate to get pressure
        for i in range (ny) :
            pres[:,i] = int_func(psixy[:,i], dpdx2[:,i])
            pres[:,i] = pres[:,i] - pres[nx-1,i]
         
        
       
        status = gen_surface(mesh=mesh) # Start generator
        while True:
      # Get the next domain
            period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
      
            ma = numpy.max(pres[xi,yi])
           
            for i in range (numpy.size(yi)) :
                pres[:,yi[i]] = pres[:,yi[i]] - pres[xi,yi[i]] + ma
             
            if last == 1 : break
        
    
        pres = pres - numpy.min(pres)
  
    # Some sort of smoothing here?
  
  
        fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, hthe, pres)
        print("Force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)))
  
  
       #!P.MULTI=[0,0,2,0,0]
        fig=figure(figsize=(7, 11))
        subplots_adjust(left=.07, bottom=.07, right=0.95, top=0.95,
                wspace=.3, hspace=.25)
        
        SURFACE( pressure, fig, xtitle="X", ytitle="Y", var='Pa', sub=[2,1,1])
        title("Input pressure")
        SURFACE( pres, fig, xtitle="X", ytitle="Y", var='Pa', sub=[2,1,2])
        title("New pressure")
  #  arrange the plot on the screen      
  #      mngr = get_current_fig_manager()
  #      geom = mngr.window.geometry()
  #      x,y,dx,dy = geom.getRect()
  #      mngr.window.setGeometry(0, 0, dx, dy)
  #
        show(block=False)
        
  
        calcp = settings.calcp
    
        if calcp == -1 :
            calcp = query_yes_no("Keep new pressure?")#, gui=gui, dialog_parent=parent)
        else: time.sleep( 2 )
        if calcp == 1 :
            pressure = pres
            dpdpsi = dpdx2
            
         
    except Exception:
        print("WARNING: Pressure profile calculation failed: ")#, !ERROR_STATE.MSG 
        pass

    #CATCH, /cancel
  
  #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  # Correct f = RBt using force balance

    calcbt = settings.calcbt
    if calcbt == -1 : calcbt = query_yes_no("Correct f=RBt using force balance?")#, gui=gui, dialog_parent=parent)
    if calcbt == 1 :

        new_Btxy = newton_Bt(psixy, Rxy, Btxy, Bpxy, pres, hthe, mesh)
    
        fb0 = force_balance(psixy, Rxy, Bpxy, new_Btxy, hthe, pressure)
        print("force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)))
    
    
        fig=figure(figsize=(7, 11))
        subplots_adjust(left=.07, bottom=.07, right=0.95, top=0.95,
                wspace=.3, hspace=.25)
        
        subplot(211)
        SURFACE( Btxy, fig, xtitle="X", ytitle="Y", var='T', sub=[2,1,1])
        title("Input Bt")
        subplot(212)
        SURFACE( new_Btxy, fig, xtitle="X", ytitle="Y", var='T', sub=[2,1,2])
        title("New Bt")
          #  arrange the plot on the screen      
        #mngr = get_current_fig_manager()
        #geom = mngr.window.geometry()
        #x,y,dx,dy = geom.getRect()
        #mngr.window.setGeometry(600, 0, dx, dy)


        show(block=False)

        calcbt = settings.calcbt
        if calcbt == -1 : calcbt = query_yes_no("Keep new Bt?")#, gui=gui, dialog_parent=parent)
        if calcbt == 1 :
            Btxy = new_Btxy
            Bxy = numpy.sqrt(Btxy**2 + Bpxy**2)
    
  #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  # CALCULATE HTHE
  # Modify hthe to fit force balance using initial guess
  # Does not depend on signs
  #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  
    calchthe = settings.calchthe
    if calchthe == -1 : calchthe = query_yes_no("Adjust hthe using force balance?")#, gui=gui, dialog_parent=parent) 
    if calchthe == 1 :
        # This doesn't behave well close to the x-points
        fixhthe = numpy.int(old_div(nx, 2))
        nh = correct_hthe(Rxy, psixy, Btxy, Bpxy, hthe, pressure, fixhthe=fixhthe)
    
        fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, nh, pressure)
        print("Force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)))
    
        print("numpy.maximum difference in hthe: ", numpy.max(numpy.abs(hthe - nh)))
        print("numpy.maximum percentage difference: ", 100.*numpy.max(numpy.abs(old_div((hthe - nh),hthe))))

       #!P.multi=[0,0,1,0,0]
        fig=figure(figsize=(7, 4))
        title("Poloidal arc length at midplane. line is initial estimate")
        plot( hthe[:,0], '-' )
        plot( nh[:,0], 'r-+' )
                  #  arrange the plot on the screen      
        #mngr = get_current_fig_manager()
        #geom = mngr.window.geometry()
        #x,y,dx,dy = geom.getRect()
        #mngr.window.setGeometry(0, 1150, dx, dy)

        show(block=False)

        if query_yes_no("Keep new hthe?") == 1:#, gui=gui, dialog_parent=parent) :
            hthe = nh
             
   
  
    if smoothhthe != None :
    # Smooth hthe to prevent large jumps in X or Y. This
    # should be done by creating a better mesh in the first place
    
    # Need to smooth in Y and X otherwise smoothing in X
    # produces discontinuities in Y
        hold = hthe
    
        if 1 :
      # Nonlinear smoothing. Tries to smooth only regions with large
      # changes in gradient
      
            hthe =0.# smooth_nl(hthe, mesh)
      
        else:
      # Just use smooth in both directions
      
            for i in range (ny) :
                hthe[:,i] = SMOOTH(SMOOTH(hthe[:,i],10),10)
         
      
        status = gen_surface(mesh=mesh) # Start generator
        while True:
        # Get the next domain
            period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
        
            n = numpy.size(yi)
        
            if period :
                hthe[xi,yi] = (SMOOTH([hthe[xi,yi[(n-4):(n-1)]], hthe[xi,yi], hthe[xi,yi[0:3]]], 4))[4:(n+3)]
            else:
                hthe[xi,yi] = SMOOTH(hthe[xi,yi], 4)
           
            if last == 1: break
            
    

    # Calculate field-line pitch
    pitch = hthe * Btxy / (Bpxy * Rxy)
  
   
    # derivative with psi
    dqdpsi = DDX(psixy, pitch)
      

    qinty, qloop = int_y(pitch, mesh, loop=0, nosmooth='nosmooth', simple='simple') 
    qinty = qinty * dtheta
    qloop = qloop * dtheta
    
    
    sinty = int_y(dqdpsi, mesh, nosmooth='nosmooth', simple='simple') * dtheta
  

  
    # NOTE: This is only valid in the core
    pol_angle = numpy.zeros((nx,ny))
    for i in range (nx) :  pol_angle[i, :] = 2.0*numpy.pi * qinty[i,:] / qloop[i]
    
    
  #;;;;;;;;;;;;;;;;;;; THETA_ZERO ;;;;;;;;;;;;;;;;;;;;;;
  # re-set zshift to be zero at the outboard midplane
  
    print("MIDPLANE INDEX = ", ymidplane)
  
    status = gen_surface(mesh=mesh) # Start generator
    while True:
    # Get the next domain
        period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
    
        w = numpy.size(numpy.where(yi == ymidplane))
        if w > 0 :
      # Crosses the midplane
            qinty[xi, yi] = qinty[xi, yi] - qinty[xi, ymidplane]
            sinty[xi, yi] = sinty[xi, yi] - sinty[xi, ymidplane]
        else:
      # Doesn't include a point at the midplane
            qinty[xi, yi] = qinty[xi, yi] - qinty[xi,yi[0]]
            sinty[xi, yi] = sinty[xi, yi] - sinty[xi,yi[0]]
     
        if last ==1 : break
  
    print("")
    print("==== Calculating curvature ====")
  
  #;;;;;;;;;;;;;;;;;;; CURVATURE ;;;;;;;;;;;;;;;;;;;;;;;
  # Calculating b x kappa
  
    if curv == None :
    
        print("*** Calculating curvature in toroidal coordinates")
    
        thetaxy = numpy.zeros((nx, ny))
        status = gen_surface(mesh=mesh) # Start generator
        while True:
            # Get the next domain
            period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
            thetaxy[xi,yi] = numpy.arange(numpy.size(yi)).astype(float)*dtheta
            if last ==1 : break
    
        
        bxcv = curvature( nx, ny, Rxy,Zxy, Brxy, Bzxy, Btxy,  
                    psixy, thetaxy, hthe,  
                     mesh=mesh)
                             
        bxcvx = bpsign*bxcv.psi 
        bxcvy= bxcv.theta
        bxcvz = bpsign*(bxcv.phi - sinty*bxcv.psi - pitch*bxcv.theta)
        
       
        # x borders
        bxcvx[0,:] = bxcvx[1,:]
        bxcvx[nx-1,:] = bxcvx[nx-2,:]
    
        bxcvy[0,:] = bxcvy[1,:]
        bxcvy[nx-1,:] = bxcvy[nx-2,:]
    
        bxcvz[0,:] = bxcvz[1,:]
        bxcvz[nx-1,:] = bxcvz[nx-2,:]

    elif curv == 1 :
        # Calculate on R-Z mesh and then interpolate onto grid
        # ( cylindrical coordinates)

        print("*** Calculating curvature in cylindrical coordinates")
    
        bxcv = rz_curvature(rz_grid)
    
        # DCT methods cause spurious oscillations
        # Linear interpolation seems to be more robust
        bxcv_psi = numpy.interp(bxcv.psi, mesh.Rixy, mesh.Zixy)
        bxcv_theta = old_div(numpy.interp(bxcv.theta, mesh.Rixy, mesh.Zixy), hthe)
        bxcv_phi = numpy.interp(bxcv.phi, mesh.Rixy, mesh.Zixy)
    
        # If Bp is reversed, then Grad x = - Grad psi
        bxcvx = bpsign*bxcv_psi
        bxcvy = bxcv_theta
        bxcvz = bpsign*(bxcv_phi - sinty*bxcv_psi - pitch*bxcv_theta)
    elif curv == 2 :
        # Curvature from Curl(b/B)
    
        bxcvx = bpsign*(Bpxy * Btxy*Rxy * DDY(old_div(1., Bxy), mesh) / hthe)
        bxcvy = -bpsign*Bxy*Bpxy * DDX(xcoord, Btxy*Rxy/Bxy^2) / (2.*hthe)
        bxcvz = Bpxy^3 * DDX(xcoord, old_div(hthe,Bpxy)) / (2.*hthe*Bxy) - Btxy*Rxy*DDX(xcoord, old_div(Btxy,Rxy)) / (2.*Bxy) - sinty*bxcvx
    
    else:
        # calculate in flux coordinates.
    
        print("*** Calculating curvature in flux coordinates")
    
        dpb = numpy.zeros((nx, ny))      # quantity used for y and z components
    
        for i in range (ny) :
            dpb[:,i] = MU*dpdpsi/Bxy[:,i]
         
        dpb = dpb + DDX(xcoord, Bxy)

        bxcvx = bpsign*(Bpxy * Btxy*Rxy * DDY(old_div(1., Bxy), mesh) / hthe)
        bxcvy = bpsign*(Bpxy*Btxy*Rxy*dpb / (hthe*Bxy^2))
        bxcvz = -dpb - sinty*bxcvx
     
  

    if smoothcurv:
        # Smooth curvature to prevent large jumps
    
        # Nonlinear smoothing. Tries to smooth only regions with large
        # changes in gradient
    
        bz = bxcvz + sinty * bxcvx
    
        print("Smoothing bxcvx...")
        bxcvx = 0.#smooth_nl(bxcvx, mesh)
        print("Smoothing bxcvy...")
        bxcvy = 0.#smooth_nl(bxcvy, mesh)
        print("Smoothing bxcvz...")
        bz = 0.#smooth_nl(bz, mesh)
    
        bxcvz = bz - sinty * bxcvx
   

  #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  # CALCULATE PARALLEL CURRENT
  # 
  # Three ways to calculate Jpar0:
  # 1. From fprime and pprime
  # 2. From Curl(B) in field-aligned coords
  # 3. From the curvature
  # 
  # Provides a way to check if Btor should be reversed
  #
  #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  
    print("")
    print("==== Calculating parallel current ====")
    
    jpar0 = - Bxy * fprime / MU - Rxy*Btxy * dpdpsi / Bxy
     
  
    # Set to zero in PF and SOL
    status = gen_surface(mesh=mesh) # Start generator
    while True:
    # Get the next domain
        period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
    
        if period == None : jpar0[xi,yi] = 0.0
        if last == 1 : break
  
  # Curl(B) expression for Jpar0 (very noisy usually)
    j0 = ( bpsign*((Bpxy*Btxy*Rxy/(Bxy*hthe))*( DDX(xcoord, Bxy**2*hthe/Bpxy) - bpsign*Btxy*Rxy*DDX(xcoord,Btxy*hthe/(Rxy*Bpxy)) ) 
        - Bxy*DDX(xcoord, Btxy*Rxy)) / MU )
  

  
  # Create a temporary mesh structure to send to adjust_jpar
    tmp_mesh = Bunch(mesh,  
                           bxcvx=bxcvx, bxcvy=bxcvy,  bxcvz=bxcvz,  
                            Bpxy=Bpxy,  Btxy=Btxy,  Bxy=Bxy,  
                            dx=dx,  dy=dy,  
                            hthe=hthe,  jpar0=jpar0,  pressure=pressure)
    tmp_mesh.psixy = psixy
  
    jpar = adjust_jpar( tmp_mesh, noplot='noplot')
    

   #!P.multi=[0,2,2,0,0]
   
    fig=figure(figsize=(15, 11))
    subplots_adjust(left=.07, bottom=.07, right=0.95, top=0.95,
                wspace=.3, hspace=.25)

    subplot(221)
    SURFACE( jpar0, fig, xtitle="X", ytitle="Y", var='A', sub=[2,2,1])
    title("Jpar from F' and P'")
    
    subplot(222)
    SURFACE( jpar, fig, xtitle="X", ytitle="Y", var='A', sub=[2,2,2])
    title("Jpar from curvature")
 
    subplot(223)
    plot( jpar0[0,:],'-', jpar[0,:] ,'+' )
    ylim([numpy.min([jpar0[0,:],jpar[0,:]]), numpy.max([jpar0[0,:],jpar[0,:]])])
    title("jpar at x=0. Solid from f' and p'")
    
    subplot(224)
    plot(jpar0[:,ymidplane],'-' , jpar[:,ymidplane] , '+' )
    ylim([numpy.min([jpar0[:,ymidplane],jpar[:,ymidplane]]),numpy.max([jpar0[:,ymidplane],jpar[:,ymidplane]])])
        
    title("Jpar at y="+numpy.str(ymidplane)+" Solid from f' and p'")
    
        #  arrange the plot on the screen      
    #mngr = get_current_fig_manager()
    #geom = mngr.window.geometry()
    #x,y,dx,dy = geom.getRect()
    #mngr.window.setGeometry(1350, 0, dx, dy)

    
    show(block=False)
  
 # !P.multi=0
  
    calcjpar = settings.calcjpar
    if calcjpar == -1 : calcjpar = query_yes_no("Use Jpar from curvature?")#, gui=gui, dialog_parent=parent)
    if calcjpar == True :
        jpar0 = jpar
   
  
    if 0 :
    
    # Try smoothing jpar0 in psi, preserving zero points and maxima
        jps = jpar0
        for y in range ( ny ):
            j = jpar0[:,y]
            js = j
            ma = numpy.max(numpy.abs(j))
            ip = numpy.argmax(numpy.abs(j))
            if (ma < 1.e-4) or (ip == 0) :
                jps[:,y] = j
         
            level = 1.
            #i0 = MAX(WHERE(ABS(j[0:ip]) LT level))
            i1 = numpy.min(numpy.where(numpy.abs(j[ip::]) < level))
      
            #IF i0 LE 0 THEN i0 = 1
            i0 = 1
      
            if i1 == -1 :
                i1 = nx-2 
            else: 
                i1 = i1 + ip
      
            if (ip <= i0) or (ip >= i1) :
      
      # Now preserve starting and end points, and peak value
                div = numpy.int(old_div((i1-i0),10))+1 # reduce number of points by this factor
      
                inds = [i0] # first point
                for i in [i0+div, ip-div, div] : inds = [inds, i]
                inds = [inds, ip] # Put in the peak point
      
        # Calculate spline interpolation of inner part
        
                js[0:ip] = spline_mono(inds, j[inds], numpy.arange(ip+1),
                             yp0=(j[i0] - j[i0-1]), ypn_1=0.0)
      
                inds = [ip] # peak point
                for i in [ip+div, i1-div, div] :
                    inds = [inds, i]
                 
      
                inds = [inds, i1]  # Last point
                js[ip:i1] = spline_mono(inds, j[inds], ip+numpy.arange(i1-ip+1),  
                              yp0=0.0, ypn_1=(j[i1+1]-j[i1]))
      
                jps[:,y] = js
     
   
  
  #;;;;;;;;;;;;;;;;;;; TOPOLOGY ;;;;;;;;;;;;;;;;;;;;;;;
  # Calculate indices for backwards-compatibility
  
    nr = numpy.size(mesh.nrad)
    np = numpy.size(mesh.npol)
    if (nr == 2) and (np == 3) :
        print("Single null equilibrium")
    
        ixseps1 = mesh.nrad[0]
        ixseps2 = nx
    
        jyseps1_1 = mesh.npol[0]-1
        jyseps1_2 = mesh.npol[0] + numpy.int(old_div(mesh.npol[1],2))
        ny_inner = jyseps1_2
        jyseps2_1 = jyseps1_2
        jyseps2_2 = ny - mesh.npol[2]-1

    elif (nr == 3) and (np == 6) :
        print("Double null equilibrium")
    
        ixseps1 = mesh.nrad[0]
        ixseps2 = ixseps1 + mesh.nrad[1]
    
        jyseps1_1 = mesh.npol[0]-1
        jyseps2_1 = jyseps1_1 + mesh.npol[1]
    
        ny_inner = jyseps2_1 + mesh.npol[2] + 1
    
        jyseps1_2 = ny_inner + mesh.npol[3] - 1
        jyseps2_2 = jyseps1_2 + mesh.npol[4]
    
    elif (nr == 1) and (np == 1) :
    
        print("Single domain")
    
        ixseps1 = nx
        ixseps2 = nx
    
        jyseps1_1 = -1
        jyseps1_2 = numpy.int(old_div(ny,2))
        jyseps2_1 = numpy.int(old_div(ny,2))
        ny_inner = numpy.int(old_div(ny,2))
        jyseps2_2 = ny - 1
    
    else:
        print("***************************************") 
        print("* WARNING: Equilibrium not recognised *")
        print("*                                     *")
        print("*  Check mesh carefully!              *")
        print("*                                     *")
        print("*  Contact Ben Dudson                 *")
        print("*      [email protected]     *")
        print("***************************************") 
        ixseps1 = -1
        ixseps2 = -1
    
        jyseps1_1 = -1
        jyseps1_2 = numpy.int(old_div(ny,2))
        jyseps2_1 = numpy.int(old_div(ny,2))
        ny_inner = numpy.int(old_div(ny,2))
        jyseps2_2 = ny - 1
   

    print("Generating plasma profiles:")
          
    print("  1. Flat temperature profile")
    print("  2. Flat density profile")
    print("  3. Te proportional to density")
    while True:
        opt = input("Profile option:")
        if eval(opt) >= 1 and eval(opt) <= 3 : break

  
    if eval(opt) == 1 :
        # flat temperature profile
    
        print("Setting flat temperature profile")
        while True:
            Te_x = eval(input("Temperature (eV):"))
                
      
        # get density
            Ni = old_div(pressure, (2.* Te_x* 1.602e-19*1.0e20))
      
            print("numpy.maximum density (10^20 m^-3):", numpy.max(Ni))
      
            done = query_yes_no("Is this ok?")
            if done == 1 : break
    
        Te = numpy.zeros((nx, ny))+Te_x
        Ti = Te
        Ni_x = numpy.max(Ni)
        Ti_x = Te_x
    elif eval(opt) == 2 :
        print("Setting flat density profile")
    
        while True:
            Ni_x = eval(input("Density [10^20 m^-3]:"))
      
            # get temperature
            Te = old_div(pressure, (2.* Ni_x * 1.602e-19*1.0e20))
      
            print("numpy.maximum temperature (eV):", numpy.max(Te))
            if query_yes_no("Is this ok?") == 1 : break
    
        Ti = Te
        Ni = numpy.zeros((nx, ny)) + Ni_x
        Te_x = numpy.max(Te)
        Ti_x = Te_x
    else:
        print("Setting te proportional to density")
    
        while True:
            Te_x = eval(input("Maximum temperature [eV]:"))
            
            
            Ni_x = old_div(numpy.max(pressure), (2.*Te_x * 1.602e-19*1.0e20))
      
            print("Maximum density [10^20 m^-3]:", Ni_x)
      
            Te = Te_x * pressure / numpy.max(pressure)
            Ni = Ni_x * pressure / numpy.max(pressure)
            if query_yes_no("Is this ok?") == 1 : break
        Ti = Te
        Ti_x =  Te_x
   
  
    rmag = numpy.max(numpy.abs(Rxy))
    print("Setting rmag = ", rmag)
  
    bmag = numpy.max(numpy.abs(Bxy))
    print("Setting bmag = ", bmag)

    #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    # save to file
    # open a new netCDF file for writing.
    handle = file_open(output) 

    print("Writing grid to file "+output)

    # Size of the grid

    s = file_write(handle, "nx", nx)
    s = file_write(handle, "ny", ny)


    # Topology for original scheme
    s = file_write(handle, "ixseps1", ixseps1)
    s = file_write(handle, "ixseps2", ixseps2)
    s = file_write(handle, "jyseps1_1", jyseps1_1)
    s = file_write(handle, "jyseps1_2", jyseps1_2)
    s = file_write(handle, "jyseps2_1", jyseps2_1)
    s = file_write(handle, "jyseps2_2", jyseps2_2)
    s = file_write(handle, "ny_inner", ny_inner);
  
    # Grid spacing
    
    s = file_write(handle, "dx", dx)
    s = file_write(handle, "dy", dy)
    
    s = file_write(handle, "ShiftAngle", qloop)
    s = file_write(handle, "zShift", qinty)
    s = file_write(handle, "pol_angle", pol_angle)
    s = file_write(handle, "ShiftTorsion", dqdpsi)

    s = file_write(handle, "Rxy",  Rxy)
    s = file_write(handle, "Zxy",  Zxy)
    s = file_write(handle, "Bpxy", Bpxy)
    s = file_write(handle, "Btxy", Btxy)
    s = file_write(handle, "Bxy",  Bxy)
    s = file_write(handle, "hthe", hthe)
    s = file_write(handle, "sinty", sinty)
    s = file_write(handle, "psixy", psixy)
    
    # Topology for general configurations
    s = file_write(handle, "yup_xsplit", mesh.yup_xsplit)
    s = file_write(handle, "ydown_xsplit", mesh.ydown_xsplit)
    s = file_write(handle, "yup_xin", mesh.yup_xin)
    s = file_write(handle, "yup_xout", mesh.yup_xout)
    s = file_write(handle, "ydown_xin", mesh.ydown_xin)
    s = file_write(handle, "ydown_xout", mesh.ydown_xout)
    s = file_write(handle, "nrad", mesh.nrad)
    s = file_write(handle, "npol", mesh.npol)

    # plasma profiles

    s = file_write(handle, "pressure", pressure)
    s = file_write(handle, "Jpar0", jpar0)
    s = file_write(handle, "Ni0", Ni)
    s = file_write(handle, "Te0", Te)
    s = file_write(handle, "Ti0", Ti)
    

    s = file_write(handle, "Ni_x", Ni_x)
    s = file_write(handle, "Te_x", Te_x)
    s = file_write(handle, "Ti_x", Ti_x)
    s = file_write(handle, "bmag", bmag)
    s = file_write(handle, "rmag", rmag)

    # Curvature
    s = file_write(handle, "bxcvx", bxcvx)
    s = file_write(handle, "bxcvy", bxcvy)
    s = file_write(handle, "bxcvz", bxcvz)

    # Psi range
    s = file_write(handle, "psi_axis", mesh.faxis)
    psi_bndry = mesh.faxis + mesh.fnorm
    s = file_write(handle, "psi_bndry", psi_bndry)

    file_close, handle
    print("DONE")
def surface_average ( var, g, area=None):
  
    s = np.ndim(var)

   
  
    if s == 4 :
        nx = np.shape(var)[1]
        ny = np.shape(var)[2]
        nt = np.shape(var)[0]
    
        result = np.zeros((nx,nt))
        for t in range (nt):
            
            result[:,t] = surface_average(var[t,:,:,:], g, area=area)
    
        return result
    elif s != 3 :
        print("ERROR: surface_average var must be 3 or 4D")
        return 0

  
  # 3D [x,y,z]
    nx = np.shape(var)[0]
    ny = np.shape(var)[1]
#    nz = np.shape(var)[2]
    
# Use bunch to create grid structure    
    grid=bunchify(g)
    
    
  # Calculate poloidal angle from grid
    theta = np.zeros((nx,ny))
  
  #status = gen_surface(mesh=grid) ; Start generator
    xi = -1
    yi = np.arange(0,ny,dtype=int)
    last = 0
    while True:
    #yi = gen_surface(last=last, xi=xi, period=periodic)
        xi = xi + 1
        if xi == nx-1 :
            last = 1
       
        dtheta = 2.*np.pi / np.float(ny)
        r = grid.Rxy[xi,yi]
        z = grid.Zxy[xi,yi]
        n = np.size(r)
        
        dl = old_div(np.sqrt( deriv(r)**2 + deriv(z)**2 ), dtheta)
        if area:
            dA = (old_div(grid.Bxy[xi,yi],grid.Bpxy[xi,yi]))*r*dl
            A = int_func(np.arange(n),dA)
            theta[xi,yi] = 2.*np.pi*A/A[n-1]
        else:
            nu = dl * (grid.Btxy[xi,yi]) / ((grid.Bpxy[xi,yi]) * r )
            theta[xi,yi] = int_func(np.arange(n)*dtheta,nu)
            theta[xi,yi] = 2.*np.pi*theta[xi,yi] / theta[xi,yi[n-1]]
     
        if last==1 : break
  
    vy = np.zeros(ny)
    result = np.zeros(nx)
    for x in range(nx) :
        for y in range(ny) :
            vy[y] = np.mean(var[x,y,:])
   
        result[x] = old_div(idl_tabulate(theta[x,:], vy), (2.*np.pi))
  
    return result
示例#5
0
def surface_average(var, g, area=None):

    s = np.ndim(var)

    if s == 4:
        nx = np.shape(var)[1]
        ny = np.shape(var)[2]
        nt = np.shape(var)[0]

        result = np.zeros((nx, nt))
        for t in range(nt):

            result[:, t] = surface_average(var[t, :, :, :], g, area=area)

        return result
    elif s != 3:
        print("ERROR: surface_average var must be 3 or 4D")
        return 0

# 3D [x,y,z]
    nx = np.shape(var)[0]
    ny = np.shape(var)[1]
    #    nz = np.shape(var)[2]

    # Use bunch to create grid structure
    grid = bunchify(g)

    # Calculate poloidal angle from grid
    theta = np.zeros((nx, ny))

    #status = gen_surface(mesh=grid) ; Start generator
    xi = -1
    yi = np.arange(0, ny, dtype=int)
    last = 0
    while True:
        #yi = gen_surface(last=last, xi=xi, period=periodic)
        xi = xi + 1
        if xi == nx - 1:
            last = 1

        dtheta = 2. * np.pi / np.float(ny)
        r = grid.Rxy[xi, yi]
        z = grid.Zxy[xi, yi]
        n = np.size(r)

        dl = old_div(np.sqrt(deriv(r)**2 + deriv(z)**2), dtheta)
        if area:
            dA = (old_div(grid.Bxy[xi, yi], grid.Bpxy[xi, yi])) * r * dl
            A = int_func(np.arange(n), dA)
            theta[xi, yi] = 2. * np.pi * A / A[n - 1]
        else:
            nu = dl * (grid.Btxy[xi, yi]) / ((grid.Bpxy[xi, yi]) * r)
            theta[xi, yi] = int_func(np.arange(n) * dtheta, nu)
            theta[xi, yi] = 2. * np.pi * theta[xi, yi] / theta[xi, yi[n - 1]]

        if last == 1: break

    vy = np.zeros(ny)
    result = np.zeros(nx)
    for x in range(nx):
        for y in range(ny):
            vy[y] = np.mean(var[x, y, :])

        result[x] = old_div(idl_tabulate(theta[x, :], vy), (2. * np.pi))

    return result