def test(): inst1 = np.random.rand(10, 10) * 100000.3 - 1000 inst2 = np.random.randint(-100000, 100000, (10, 10)) for inst in [inst1, inst2]: rgb = encode_inst_id.id_to_rgb(inst) recover = encode_inst_id.rgb_to_id(rgb) mg() assert (inst == recover).all()
def test_heatmap_to_pseudo_color(depth): def _f(v): return tuple(interpolate_or_clip(turbo_colormap_data, v)) vf = np.vectorize(_f) with timeit("vf"): color1 = np.concatenate([i[..., None] for i in vf(depth)], -1) with timeit("heatmap_to_pseudo_color"): color2 = heatmap_to_pseudo_color(depth) mg() assert (np.abs(color1 - color2) < 1 / 256).all() show - color1
def test(cls): inst0 = np.arange(-100, 10000) inst1 = np.random.randint(-cls.max_denominator / 2, cls.max_denominator / 2, (10000)) inst2 = np.float32( np.linspace(-cls.max_denominator / 2, cls.max_denominator / 2, 10000)) inst3 = np.float32(np.random.rand(10000) * 10000.3 - 1000) for inst in [inst0, inst1, inst2, inst3]: boxx.tree - inst for inst_id in inst.flatten(): rgb = encode_inst_id.id_to_rgb(inst_id).astype(np.float32) # print(rgb, inst_id) recover = encode_inst_id.rgb_to_id(rgb) boxx.mg() assert recover == inst_id, (inst_id, recover) assert (encode_inst_id.rgb_to_id(np.float32( [0, 0, 0])) == 0), "Check background should decode to 0"