示例#1
0
    def run_bayes_bp(self, fold=10):
        nodes_with_in_degree = []
        for node in self.mybp.G.nodes():
            nodes_with_in_degree.append([node, self.mybp.G.in_degree(node)])

        nodes = sorted(nodes_with_in_degree, key=lambda x: x[1], reverse=True)
        trunk_size = len(nodes) / fold

        train_ids = [node[0] for node in nodes[0:trunk_size]]
        test_ids = [node[0] for node in nodes[trunk_size:]]

        fscore = 0.0
        accuracy = 0.0
        """apply Belief Propagation"""
        nodes_belief = dict.fromkeys(self.mybp.G.nodes(), [0.5, 0.5])
        for node in train_ids:
            if self.mybp.nodes_label[node] == "d":
                nodes_belief[node] = [0.99, 0.01]
            else:
                nodes_belief[node] = [0.01, 0.99]

        edge_messages = self.mybp.initialize_messages(self.mybp.G)
        new_nodes_belief, edge_messages = bp.beliefprop(
            self.mybp.G, edge_messages, nodes_belief)
        accuracy, fscore = self.mybp.evaluation(self.mybp.nodes_label,
                                                new_nodes_belief, train_ids)
        print "\tbayes_based_bp: ", accuracy, fscore
        return accuracy, fscore
    def run_bayes_bp(self, fold = 10):
        nodes_with_in_degree = []
        for node in self.mybp.G.nodes():
            nodes_with_in_degree.append([node, self.mybp.G.in_degree(node)])
        
        nodes = sorted(nodes_with_in_degree, key = lambda x : x[1], reverse = True)
        trunk_size = len(nodes)/fold

        train_ids = [node[0] for node in nodes[0:trunk_size]]
        test_ids = [node[0] for node in nodes[trunk_size:]]
        
        fscore = 0.0
        accuracy = 0.0
        
        """apply Belief Propagation"""
        nodes_belief = dict.fromkeys(self.mybp.G.nodes(), [0.5, 0.5])
        for node in train_ids:
            if self.mybp.nodes_label[node] == "d":
                nodes_belief[node] = [0.99, 0.01]
            else:
                nodes_belief[node] = [0.01, 0.99]
        
        edge_messages = self.mybp.initialize_messages(self.mybp.G)
        new_nodes_belief, edge_messages = bp.beliefprop(self.mybp.G, edge_messages, nodes_belief)
        accuracy, fscore = self.mybp.evaluation(self.mybp.nodes_label, new_nodes_belief, train_ids)
        print "\tbayes_based_bp: ", accuracy, fscore
        return accuracy, fscore
示例#3
0
    def run_bayes_bp(self, fold=10, iters=5):
        nodes = list(self.mybp.G.nodes())
        f = open(
            "../results/results_fscore_accuracy_feb27_bp/bp_result_bayes_adjusted_%dfold.csv"
            % fold, "w")
        f.write("bayes_based_bp,bayes_adjusted_bp\n")
        f.write(
            "iter,bayes_adjusted_bp_fscore,bayes_adjusted_bp_accuracy,bayes_fscore,bayes_accuracy\n"
        )
        for iter in range(iters):
            random.shuffle(nodes)  # shuffle the list for every iteration
            trunk_size = len(nodes) / fold

            mean_fscore_bayes = 0.0
            mean_accuracy_bayes = 0.0
            mean_fscore_bayes_adjusted_bp = 0.0
            mean_accuracy_bayes_adjusted_bp = 0.0

            for i in range(fold):
                print "iter %d  " % i
                train_ids = []
                test_ids = []
                for j in range(fold):
                    if j == i:
                        if j == fold - 1:
                            train_ids.extend(nodes[j * trunk_size:len(nodes)])
                        else:
                            train_ids.extend(nodes[j * trunk_size:(j + 1) *
                                                   trunk_size])
                    else:
                        if j == fold - 1:
                            test_ids.extend(nodes[j * trunk_size:len(nodes)])
                        else:
                            test_ids.extend(nodes[j * trunk_size:(j + 1) *
                                                  trunk_size])
                """apply Naive Bayes"""
                train_x = []
                train_Y = []
                test_x = []
                test_Y = []
                for id in train_ids:
                    train_x.append(self.toList(self.vector[id]))
                    if self.mybp.nodes_label[id] == "d":
                        train_Y.append(1)
                    else:
                        train_Y.append(0)
                for id in test_ids:
                    test_x.append(self.toList(self.vector[id]))
                    if self.mybp.nodes_label[id] == "d":
                        test_Y.append(1)
                    else:
                        test_Y.append(0)
                clf = GaussianNB()
                clf.fit(train_x, train_Y)
                y_predicted = clf.predict(test_x)
                y_predicted_prob = clf.predict_proba(test_x)
                print y_predicted_prob

                f_score_bayes = metrics.f1_score(test_Y, y_predicted)
                accuracy_bayes = metrics.accuracy_score(test_Y, y_predicted)
                mean_fscore_bayes += f_score_bayes
                mean_accuracy_bayes += accuracy_bayes
                print "\tnaive bayes: ", accuracy_bayes, f_score_bayes
                """apply bayes_adjusted Belief Propagation"""
                nodes_belief = dict.fromkeys(self.mybp.G.nodes(), [0.5, 0.5])
                for node in train_ids:
                    if self.mybp.nodes_label[node] == "d":
                        nodes_belief[node] = [0.99, 0.01]
                    else:
                        nodes_belief[node] = [0.01, 0.99]
                edge_messages = self.mybp.initialize_messages(self.mybp.G)
                new_nodes_belief, edge_messages = bp.beliefprop(
                    self.mybp.G, edge_messages, nodes_belief)
                predicted_prob = {}
                for k in range(len(test_ids)):
                    predicted_prob.update({test_ids[k]: y_predicted_prob[k]})
                accuracy_bayes_adjusted_bp, fscore_bayes_adjusted_bp = self.evaluate(
                    self.mybp.nodes_label, new_nodes_belief, train_ids,
                    predicted_prob)
                mean_accuracy_bayes_adjusted_bp += accuracy_bayes_adjusted_bp
                mean_fscore_bayes_adjusted_bp += fscore_bayes_adjusted_bp
                print "\tbayes_adjusted_bp: ", accuracy_bayes_adjusted_bp, fscore_bayes_adjusted_bp

                f.write(
                    "f%d,%f,%f,%f,%f\n" %
                    (i, fscore_bayes_adjusted_bp, accuracy_bayes_adjusted_bp,
                     f_score_bayes, accuracy_bayes))
            f.write("i%d,%f,%f,%f,%f\n" %
                    (iter, mean_fscore_bayes_adjusted_bp / float(fold),
                     mean_accuracy_bayes_adjusted_bp / float(fold),
                     mean_fscore_bayes / float(fold),
                     mean_accuracy_bayes / float(fold)))
        f.close()
 def run_bayes_bp(self, fold = 10, iters = 5):
     nodes = list(self.mybp.G.nodes())
     f = open("../results/results_fscore_accuracy_feb27_bp/bp_result_bayes_adjusted_%dfold.csv" %fold,"w")
     f.write("bayes_based_bp,bayes_adjusted_bp\n")
     f.write("iter,bayes_adjusted_bp_fscore,bayes_adjusted_bp_accuracy,bayes_fscore,bayes_accuracy\n")
     for iter in range(iters):
         random.shuffle(nodes) # shuffle the list for every iteration
         trunk_size = len(nodes)/fold
         
         mean_fscore_bayes = 0.0
         mean_accuracy_bayes = 0.0
         mean_fscore_bayes_adjusted_bp = 0.0
         mean_accuracy_bayes_adjusted_bp = 0.0
         
         for i in range(fold):
             print "iter %d  " %i
             train_ids = []
             test_ids = []
             for j in range(fold):
                 if j == i:
                     if j == fold-1:
                         train_ids.extend(nodes[j*trunk_size:len(nodes)])
                     else:
                         train_ids.extend(nodes[j*trunk_size:(j+1)*trunk_size])
                 else:
                     if j == fold-1:
                         test_ids.extend(nodes[j*trunk_size:len(nodes)])
                     else:
                         test_ids.extend(nodes[j*trunk_size:(j+1)*trunk_size])
             
             """apply Naive Bayes"""
             train_x = []
             train_Y = []
             test_x = []
             test_Y = []
             for id in train_ids:
                 train_x.append(self.toList(self.vector[id]))
                 if self.mybp.nodes_label[id] == "d":
                     train_Y.append(1)
                 else:
                     train_Y.append(0)
             for id in test_ids:
                 test_x.append(self.toList(self.vector[id]))
                 if self.mybp.nodes_label[id] == "d":
                     test_Y.append(1)
                 else:
                     test_Y.append(0)
             clf = GaussianNB()
             clf.fit(train_x, train_Y)
             y_predicted = clf.predict(test_x)
             y_predicted_prob = clf.predict_proba(test_x)
             print y_predicted_prob
             
             f_score_bayes = metrics.f1_score(test_Y, y_predicted)
             accuracy_bayes = metrics.accuracy_score(test_Y, y_predicted)
             mean_fscore_bayes += f_score_bayes
             mean_accuracy_bayes += accuracy_bayes
             print "\tnaive bayes: ", accuracy_bayes, f_score_bayes
             
             """apply bayes_adjusted Belief Propagation"""
             nodes_belief = dict.fromkeys(self.mybp.G.nodes(), [0.5, 0.5])
             for node in train_ids:
                 if self.mybp.nodes_label[node] == "d":
                     nodes_belief[node] = [0.99, 0.01]
                 else:
                     nodes_belief[node] = [0.01, 0.99]
             edge_messages = self.mybp.initialize_messages(self.mybp.G)
             new_nodes_belief, edge_messages = bp.beliefprop(self.mybp.G, edge_messages, nodes_belief)
             predicted_prob = {}
             for k in range(len(test_ids)):
                 predicted_prob.update({test_ids[k] : y_predicted_prob[k]})
             accuracy_bayes_adjusted_bp, fscore_bayes_adjusted_bp = self.evaluate(self.mybp.nodes_label, 
                                                                                  new_nodes_belief, 
                                                                                  train_ids, 
                                                                                  predicted_prob)
             mean_accuracy_bayes_adjusted_bp += accuracy_bayes_adjusted_bp
             mean_fscore_bayes_adjusted_bp += fscore_bayes_adjusted_bp
             print "\tbayes_adjusted_bp: ", accuracy_bayes_adjusted_bp, fscore_bayes_adjusted_bp
             
             f.write("f%d,%f,%f,%f,%f\n" %(i, fscore_bayes_adjusted_bp, accuracy_bayes_adjusted_bp,
                                                 f_score_bayes, accuracy_bayes))
         f.write("i%d,%f,%f,%f,%f\n" %(iter, mean_fscore_bayes_adjusted_bp/float(fold), 
                                             mean_accuracy_bayes_adjusted_bp/float(fold),
                                             mean_fscore_bayes/float(fold), 
                                             mean_accuracy_bayes/float(fold)))
     f.close()