def bpnet_export_bw( model_dir, output_prefix, fasta_file=None, regions=None, contrib_method='grad', contrib_wildcard='*/profile/wn,*/counts/pre-act', # specifies which contrib. scores to compute batch_size=256, scale_contribution=False, flip_negative_strand=False, gpu=0, memfrac_gpu=0.45): """Export model predictions and contribution scores to big-wig files """ from pybedtools import BedTool from bpnet.modisco.core import Seqlet output_dir = os.path.dirname(output_prefix) add_file_logging(output_dir, logger, 'bpnet-export-bw') os.makedirs(output_dir, exist_ok=True) if gpu is not None: create_tf_session(gpu, per_process_gpu_memory_fraction=memfrac_gpu) logger.info("Load model") bp = BPNetSeqModel.from_mdir(model_dir) if regions is not None: logger.info( f"Computing predictions and contribution scores for provided regions: {regions}" ) regions = list(BedTool(regions)) else: logger.info("--regions not provided. Using regions from dataspec.yml") ds = DataSpec.load(os.path.join(model_dir, 'dataspec.yml')) regions = ds.get_all_regions() seqlen = bp.input_seqlen() logger.info( f"Resizing regions (fix=center) to model's input width of: {seqlen}") regions = [resize_interval(interval, seqlen) for interval in regions] logger.info("Sort the bed file") regions = list(BedTool(regions).sort()) bp.export_bw(regions=regions, output_prefix=output_prefix, contrib_method=contrib_method, fasta_file=fasta_file, pred_summaries=contrib_wildcard.replace("*/", "").split(","), batch_size=batch_size, scale_contribution=scale_contribution, flip_negative_strand=flip_negative_strand, chromosomes=None) # infer chromosomes from the fasta file
def bpnet_contrib( model_dir, output_file, method="grad", dataspec=None, regions=None, fasta_file=None, # alternative to dataspec shuffle_seq=False, shuffle_regions=False, max_regions=None, # reference='zeroes', # Currently the only option # peak_width=1000, # automatically inferred from 'config.gin.json' # seq_width=None, contrib_wildcard='*/profile/wn,*/counts/pre-act', # specifies which contrib. scores to compute batch_size=512, gpu=0, memfrac_gpu=0.45, num_workers=10, storage_chunk_size=512, exclude_chr='', include_chr='', overwrite=False, skip_bias=False): """Run contribution scores for a BPNet model """ from bpnet.extractors import _chrom_sizes add_file_logging(os.path.dirname(output_file), logger, 'bpnet-contrib') if gpu is not None: create_tf_session(gpu, per_process_gpu_memory_fraction=memfrac_gpu) else: # Don't use any GPU's os.environ['CUDA_VISIBLE_DEVICES'] = '' if os.path.exists(output_file): if overwrite: os.remove(output_file) else: raise ValueError( f"File exists {output_file}. Use overwrite=True to overwrite it" ) config = read_json(os.path.join(model_dir, 'config.gin.json')) seq_width = config['seq_width'] peak_width = config['seq_width'] # NOTE - seq_width has to be the same for the input and the target # # infer from the command line # if seq_width is None: # logger.info("Using seq_width = peak_width") # seq_width = peak_width # # make sure these are int's # seq_width = int(seq_width) # peak_width = int(peak_width) # Split contrib_wildcards = contrib_wildcard.split(",") # Allow chr inclusion / exclusion if exclude_chr: exclude_chr = exclude_chr.split(",") else: exclude_chr = None if include_chr: include_chr = include_chr.split(",") else: include_chr = None logger.info("Loading the config files") model_dir = Path(model_dir) logger.info("Creating the dataset") from bpnet.datasets import StrandedProfile, SeqClassification if fasta_file is not None: if regions is None: raise ValueError( "fasta_file specified. Expecting regions to be specified as well" ) dl_valid = SeqClassification( fasta_file=fasta_file, intervals_file=regions, incl_chromosomes=include_chr, excl_chromosomes=exclude_chr, auto_resize_len=seq_width, ) chrom_sizes = _chrom_sizes(fasta_file) else: if dataspec is None: logger.info("Using dataspec used to train the model") # Specify dataspec dataspec = model_dir / "dataspec.yml" ds = DataSpec.load(dataspec) dl_valid = StrandedProfile(ds, incl_chromosomes=include_chr, excl_chromosomes=exclude_chr, intervals_file=regions, peak_width=peak_width, shuffle=False, seq_width=seq_width) chrom_sizes = _chrom_sizes(ds.fasta_file) # Setup contribution score trimming (not required currently) if seq_width > peak_width: # Trim # make sure we can nicely trim the peak logger.info("Trimming the output") assert (seq_width - peak_width) % 2 == 0 trim_start = (seq_width - peak_width) // 2 trim_end = seq_width - trim_start assert trim_end - trim_start == peak_width elif seq_width == peak_width: trim_start = 0 trim_end = peak_width else: raise ValueError("seq_width < peak_width") seqmodel = SeqModel.from_mdir(model_dir) # get all possible interpretation names # make sure they match the specified glob intp_names = [ name for name, _ in seqmodel.get_intp_tensors(preact_only=False) if fnmatch_any(name, contrib_wildcards) ] logger.info(f"Using the following interpretation targets:") for n in intp_names: print(n) if max_regions is not None: if len(dl_valid) > max_regions: logging.info( f"Using {max_regions} regions instead of the original {len(dl_valid)}" ) else: logging.info( f"--max-regions={max_regions} is larger than the dataset size: {len(dl_valid)}. " "Using the dataset size for max-regions") max_regions = len(dl_valid) else: max_regions = len(dl_valid) max_batches = np.ceil(max_regions / batch_size) writer = HDF5BatchWriter(output_file, chunk_size=storage_chunk_size) for i, batch in enumerate( tqdm(dl_valid.batch_iter(batch_size=batch_size, shuffle=shuffle_regions, num_workers=num_workers), total=max_batches)): # store the original batch containing 'inputs' and 'targets' if skip_bias: batch['inputs'] = { 'seq': batch['inputs']['seq'] } # ignore all other inputs if max_batches > 0: if i > max_batches: break if shuffle_seq: # Di-nucleotide shuffle the sequences batch['inputs']['seq'] = onehot_dinucl_shuffle( batch['inputs']['seq']) for name in intp_names: hyp_contrib = seqmodel.contrib_score( batch['inputs']['seq'], name=name, method=method, batch_size=None) # don't second-batch # put contribution scores to the dictionary # also trim the contribution scores appropriately so that # the output will always be w.r.t. the peak center batch[f"/hyp_contrib/{name}"] = hyp_contrib[:, trim_start:trim_end] # trim the sequence as well # Trim the sequence batch['inputs']['seq'] = batch['inputs']['seq'][:, trim_start:trim_end] # ? maybe it would it be better to have an explicit ContribFileWriter. # that way the written schema would be fixed writer.batch_write(batch) # add chromosome sizes writer.f.attrs['chrom_sizes'] = json.dumps(chrom_sizes) writer.close() logger.info(f"Done. Contribution score file was saved to: {output_file}")
def bpnet_train(dataspec, output_dir, premade='bpnet9', config=None, override='', gpu=0, memfrac_gpu=0.45, num_workers=8, vmtouch=False, in_memory=False, wandb_project="", cometml_project="", run_id=None, note_params="", overwrite=False): """Train a model using gin-config Output files: train.log - log file model.h5 - Keras model HDF5 file seqmodel.pkl - Serialized SeqModel. This is the main trained model. eval-report.ipynb/.html - evaluation report containing training loss curves and some example model predictions. You can specify your own ipynb using `--override='report_template.name="my-template.ipynb"'`. model.gin -> copied from the input dataspec.yaml -> copied from the input """ cometml_experiment, wandb_run, output_dir = start_experiment( output_dir=output_dir, cometml_project=cometml_project, wandb_project=wandb_project, run_id=run_id, note_params=note_params, overwrite=overwrite) # remember the executed command write_json( { "dataspec": dataspec, "output_dir": output_dir, "premade": premade, "config": config, "override": override, "gpu": gpu, "memfrac_gpu": memfrac_gpu, "num_workers": num_workers, "vmtouch": vmtouch, "in_memory": in_memory, "wandb_project": wandb_project, "cometml_project": cometml_project, "run_id": run_id, "note_params": note_params, "overwrite": overwrite }, os.path.join(output_dir, 'bpnet-train.kwargs.json'), indent=2) # copy dataspec.yml and input config file over if config is not None: shutil.copyfile(config, os.path.join(output_dir, 'input-config.gin')) # parse and validate the dataspec ds = DataSpec.load(dataspec) related_dump_yaml(ds.abspath(), os.path.join(output_dir, 'dataspec.yml')) if vmtouch: if shutil.which('vmtouch') is None: logger.warn( "vmtouch is currently not installed. " "--vmtouch disabled. Please install vmtouch to enable it") else: # use vmtouch to load all file to memory ds.touch_all_files() # -------------------------------------------- # Parse the config file # import gin.tf if gpu is not None: logger.info(f"Using gpu: {gpu}, memory fraction: {memfrac_gpu}") create_tf_session(gpu, per_process_gpu_memory_fraction=memfrac_gpu) gin_files = _get_gin_files(premade, config) # infer differnet hyper-parameters from the dataspec file if len(ds.bias_specs) > 0: use_bias = True if len(ds.bias_specs) > 1: # TODO - allow multiple bias track # - split the heads separately raise ValueError("Only a single bias track is currently supported") bias = [v for k, v in ds.bias_specs.items()][0] n_bias_tracks = len(bias.tracks) else: use_bias = False n_bias_tracks = 0 tasks = list(ds.task_specs) # TODO - handle multiple track widths? tracks_per_task = [len(v.tracks) for k, v in ds.task_specs.items()][0] # figure out the right hyper-parameters dataspec_bindings = [ f'dataspec="{dataspec}"', f'use_bias={use_bias}', f'n_bias_tracks={n_bias_tracks}', f'tracks_per_task={tracks_per_task}', f'tasks={tasks}' ] gin.parse_config_files_and_bindings( gin_files, bindings=dataspec_bindings + override.split(";"), # NOTE: custom files were inserted right after # ther user's config file and before the `override` # parameters specified at the command-line # This allows the user to disable the bias correction # despite being specified in the config file skip_unknown=False) # -------------------------------------------- # Remember the parsed configs # comet - log environment if cometml_experiment is not None: # log other parameters cometml_experiment.log_parameters(dict(premade=premade, config=config, override=override, gin_files=gin_files, gpu=gpu), prefix='cli/') # wandb - log environment if wandb_run is not None: # store general configs wandb_run.config.update( dict_prefix_key(dict(premade=premade, config=config, override=override, gin_files=gin_files, gpu=gpu), prefix='cli/')) return train( output_dir=output_dir, cometml_experiment=cometml_experiment, wandb_run=wandb_run, num_workers=num_workers, in_memory=in_memory, # to execute the sub-notebook memfrac_gpu=memfrac_gpu, gpu=gpu)
def bpnet_modisco_run( contrib_file, output_dir, null_contrib_file=None, premade='modisco-50k', config=None, override='', contrib_wildcard="*/profile/wn", # on which contribution scores to run modisco only_task_regions=False, filter_npy=None, exclude_chr="", num_workers=10, gpu=None, # no need to use a gpu by default memfrac_gpu=0.45, overwrite=False, ): """Run TF-MoDISco on the contribution scores stored in the contribution score file generated by `bpnet contrib`. """ add_file_logging(output_dir, logger, 'modisco-run') if gpu is not None: logger.info(f"Using gpu: {gpu}, memory fraction: {memfrac_gpu}") create_tf_session(gpu, per_process_gpu_memory_fraction=memfrac_gpu) else: # Don't use any GPU's os.environ['CUDA_VISIBLE_DEVICES'] = '' os.environ['MKL_THREADING_LAYER'] = 'GNU' import modisco assert '/' in contrib_wildcard if filter_npy is not None: filter_npy = os.path.abspath(str(filter_npy)) if config is not None: config = os.path.abspath(str(config)) # setup output file paths output_path = os.path.abspath(os.path.join(output_dir, "modisco.h5")) remove_exists(output_path, overwrite=overwrite) output_filter_npy = os.path.abspath( os.path.join(output_dir, 'modisco-run.subset-contrib-file.npy')) remove_exists(output_filter_npy, overwrite=overwrite) kwargs_json_file = os.path.join(output_dir, "modisco-run.kwargs.json") remove_exists(kwargs_json_file, overwrite=overwrite) if config is not None: config_output_file = os.path.join(output_dir, 'modisco-run.input-config.gin') remove_exists(config_output_file, overwrite=overwrite) shutil.copyfile(config, config_output_file) # save the hyper-parameters write_json( dict(contrib_file=os.path.abspath(contrib_file), output_dir=str(output_dir), null_contrib_file=null_contrib_file, config=str(config), override=override, contrib_wildcard=contrib_wildcard, only_task_regions=only_task_regions, filter_npy=str(filter_npy), exclude_chr=exclude_chr, num_workers=num_workers, overwrite=overwrite, output_filter_npy=output_filter_npy, gpu=gpu, memfrac_gpu=memfrac_gpu), kwargs_json_file) # setup the gin config using premade, config and override cli_bindings = [f'num_workers={num_workers}'] gin.parse_config_files_and_bindings( _get_gin_files(premade, config), bindings=cli_bindings + override.split(";"), # NOTE: custom files were inserted right after # ther user's config file and before the `override` # parameters specified at the command-line skip_unknown=False) log_gin_config(output_dir, prefix='modisco-run.') # -------------------------------------------- # load the contribution file logger.info(f"Loading the contribution file: {contrib_file}") cf = ContribFile(contrib_file) tasks = cf.get_tasks() # figure out subset_tasks subset_tasks = set() for w in contrib_wildcard.split(","): task, head, head_summary = w.split("/") if task == '*': subset_tasks = None else: if task not in tasks: raise ValueError(f"task {task} not found in tasks: {tasks}") subset_tasks.add(task) if subset_tasks is not None: subset_tasks = list(subset_tasks) # -------------------------------------------- # subset the intervals logger.info(f"Loading ranges") ranges = cf.get_ranges() # include all samples at the beginning include_samples = np.ones(len(cf)).astype(bool) # --only-task-regions if only_task_regions: if subset_tasks is None: logger.warn( "contrib_wildcard contains all tasks (specified by */<head>/<summary>). Not using --only-task-regions" ) elif np.all(ranges['interval_from_task'] == ''): raise ValueError( "Contribution file wasn't created from multiple set of peaks. " "E.g. interval_from_task='' for all ranges. Please disable --only-task-regions" ) else: logger.info(f"Subsetting ranges according to `interval_from_task`") include_samples = include_samples & ranges[ 'interval_from_task'].isin(subset_tasks).values logger.info( f"Using {include_samples.sum()} / {len(include_samples)} regions after --only-task-regions subset" ) # --exclude-chr if exclude_chr: logger.info(f"Excluding chromosomes: {exclude_chr}") chromosomes = ranges['chr'] include_samples = include_samples & ( ~pd.Series(chromosomes).isin(exclude_chr)).values logger.info( f"Using {include_samples.sum()} / {len(include_samples)} regions after --exclude-chr subset" ) # -- filter-npy if filter_npy is not None: print(f"Loading a filter file from {filter_npy}") include_samples = include_samples & np.load(filter_npy) logger.info( f"Using {include_samples.sum()} / {len(include_samples)} regions after --filter-npy subset" ) # store the subset-contrib-file.npy logger.info( f"Saving the included samples from ContribFile to {output_filter_npy}") np.save(output_filter_npy, include_samples) # -------------------------------------------- # convert to indices idx = np.arange(len(include_samples))[include_samples] seqs = cf.get_seq(idx=idx) # fetch the contribution scores from the importance score file # expand * to use all possible values # TODO - allow this to be done also for all the heads? hyp_contrib = {} task_names = [] for w in contrib_wildcard.split(","): wc_task, head, head_summary = w.split("/") if task == '*': use_tasks = tasks else: use_tasks = [wc_task] for task in use_tasks: key = f"{task}/{head}/{head_summary}" task_names.append(key) hyp_contrib[key] = cf._subset(cf.data[f'/hyp_contrib/{key}'], idx=idx) contrib = {k: v * seqs for k, v in hyp_contrib.items()} if null_contrib_file is not None: logger.info(f"Using null-contrib-file: {null_contrib_file}") null_cf = ContribFile(null_contrib_file) null_seqs = null_cf.get_seq() null_per_pos_scores = { key: null_seqs * null_cf.data[f'/hyp_contrib/{key}'][:] for key in task_names } else: # default Null distribution. Requires modisco 5.0 logger.info(f"Using default null_contrib_scores") null_per_pos_scores = modisco.coordproducers.LaplaceNullDist( num_to_samp=10000) # run modisco. # NOTE: `workflow` and `report` parameters are provided by gin config files modisco_run(task_names=task_names, output_path=output_path, contrib_scores=contrib, hypothetical_contribs=hyp_contrib, one_hot=seqs, null_per_pos_scores=null_per_pos_scores) logger.info( f"bpnet modisco-run finished. modisco.h5 and other files can be found in: {output_dir}" )