示例#1
0
def load_train_test_hgd(subject_id):
    hgd_names = [
        'Fp2', 'Fp1', 'F4', 'F3', 'C4', 'C3', 'P4', 'P3', 'O2', 'O1', 'F8',
        'F7', 'T8', 'T7', 'P8', 'P7', 'M2', 'M1', 'Fz', 'Cz', 'Pz'
    ]
    log.info("Loading dataset..")
    # using the moabb dataset to load our data
    dataset = MOABBDataset(dataset_name="Schirrmeister2017",
                           subject_ids=[subject_id])
    sfreq = 32
    train_whole_set = dataset.split('run')['train']

    log.info("Preprocessing dataset..")
    # Define preprocessing steps
    preprocessors = [
        # convert from volt to microvolt, directly modifying the numpy array
        MNEPreproc(
            fn='set_eeg_reference',
            ref_channels='average',
        ),
        MNEPreproc(fn='pick_channels', ch_names=hgd_names, ordered=True),
        NumpyPreproc(fn=lambda x: x * 1e6),
        NumpyPreproc(fn=lambda x: np.clip(x, -800, 800)),
        NumpyPreproc(fn=lambda x: x / 10),
        MNEPreproc(fn='resample', sfreq=sfreq),
        NumpyPreproc(fn=lambda x: np.clip(x, -80, 80)),
        NumpyPreproc(fn=lambda x: x / 3),
        NumpyPreproc(fn=exponential_moving_demean,
                     init_block_size=int(sfreq * 10),
                     factor_new=1 / (sfreq * 5)),
        # keep only EEG sensors
        # NumpyPreproc(fn=exponential_moving_demean, init_block_size=sfreq*10, factor_new=1/(sfreq*5)),
    ]

    # Preprocess the data
    preprocess(train_whole_set, preprocessors)
    # Next, extract the 4-second trials from the dataset.
    # Create windows using braindecode function for this. It needs parameters to define how
    # trials should be used.
    class_names = ['Right Hand', 'Rest']  # for later plotting
    class_mapping = {'right_hand': 0, 'rest': 1}

    windows_dataset = create_windows_from_events(
        train_whole_set,
        trial_start_offset_samples=0,
        trial_stop_offset_samples=0,
        preload=True,
        mapping=class_mapping,
    )
    from torch.utils.data import Subset
    n_split = int(np.round(0.75 * len(windows_dataset)))
    valid_set = Subset(windows_dataset, range(n_split, len(windows_dataset)))
    train_set = Subset(windows_dataset, range(0, n_split))
    return train_set, valid_set
示例#2
0
def test_predict_trials():
    ds = MOABBDataset('BNCI2014001', subject_ids=1)
    ds1 = ds.split([0])['0']

    # determine original trial size
    windows_ds1 = create_windows_from_events(
        ds1,
    )
    trial_size = windows_ds1[0][0].shape[1]

    # create two windows per trial, where windows maximally overlap
    window_size_samples = trial_size - 1
    window_stride_samples = 5
    windows_ds1 = create_windows_from_events(
        ds1,
        window_size_samples=window_size_samples,
        window_stride_samples=window_stride_samples,
        drop_last_window=False,
    )

    in_chans = windows_ds1[0][0].shape[0]
    n_classes = len(windows_ds1.get_metadata()['target'].unique())
    model = ShallowFBCSPNet(
        in_chans=in_chans,
        n_classes=n_classes,
    )
    to_dense_prediction_model(model)

    output_shape = get_output_shape(model, in_chans, window_size_samples)
    # the number of samples required to get 1 output
    receptive_field_size = window_size_samples - output_shape[-1] + 1

    preds, targets = predict_trials(model, windows_ds1)

    # some model, cropped data
    assert preds.shape[-1] + receptive_field_size - 1 == trial_size
    assert preds.shape[1] == n_classes
    assert preds.shape[0] == targets.shape[0]
    metadata = windows_ds1.get_metadata()
    expected_targets = metadata[metadata['i_window_in_trial'] == 0][
        'target'].values
    np.testing.assert_array_equal(expected_targets, targets)

    # some model, trialwise data
    windows_ds2 = create_windows_from_events(ds1)
    with pytest.warns(UserWarning, match='This function was designed to predict'
                                         ' trials from cropped datasets.'):
        predict_trials(model, windows_ds2)

    # cropped EEGClassifier, cropped data
    clf = EEGClassifier(
        model,
        criterion=torch.nn.NLLLoss,
        optimizer=optim.AdamW,
        train_split=None,
        optimizer__lr=0.0625 * 0.01,
        optimizer__weight_decay=0,
        batch_size=64,
    )
    clf.initialize()
    clf.predict_trials(windows_ds1, return_targets=True)

    # cropped EEGClassifier, trialwise data
    with pytest.warns(UserWarning, match="This method was designed to predict "
                                         "trials in cropped mode. Calling it "
                                         "when cropped is False will give the "
                                         "same result as '.predict'."):
        clf.predict_trials(windows_ds2)